INSTALLATION INSTRUCTIONS

PANEL INTERFACE MODULE
(PIM)

Includes Installation Instructions for:
PIM-TD2, PIME-TD4, PIM-EXP, & PIM-485-16-TD

The most current version of this document is available for download at:
http://www.irsupport.net
NOTE: These instructions are for installing the Panel Interface Module (PIM), a component of a Wyreless Access System. After completing this installation refer to the “Configuring and Operating the Wyreless Access System” manual.

Table of Contents

1. Wyreless Access™ System Components ..4
 1.1 Overview ...4
 1.2 Panel Interface Module (PIM) Components & Sales Models ...5

2. Determining the Best PIM Location ..7
 2.1 PIM Location Guidelines ..7
 2.2 Pre-installation Wyreless Access™ Test ...7

3. Installing the Panel Interface Module (PIM) ..9
 3.1 How to determine the version of PIM PCB ..9
 3.2 PIM PCB Functional Components ...11
 3.3 Tools – Hardware Required ..13
 3.4 Mounting the PIM ...13
 3.5 Installing the Antenna ...15
 3.6 Connecting the Original PIM PCB to the Access Control Panel ...16
 3.7 Connecting the RS232 PIM PCB to the Access Control Panel ...19
 3.8 Connecting the RS485 PIM PCB to the Access Control Panel ...22

4. Installing a Panel Interface Module Extender ..24

5. PIM/PIME Cable/Wire Specifications ...25

6. Contacting Technical Support ..26

7. FCC/UL Compliance & Warnings ...27
 7.1 FCC Compliance ...27
 7.2 UL Compliance ...27
 7.3 Warnings ...27

8. Revision History ...28
1. Wyreless Access™ System Components

1.1 Overview

Every access control system that uses Wyreless Access™ contains two different types of modules (Figure 1-1):

- at least one Wyreless Panel Interface Module (WPIM), and
- at least one Wyreless Access Point Module (WAPM)

![Figure 1-1 – Wyreless Access System Block Diagram](image)

The Schlage product line contains several different expressions of each module.

The WPIMs are wired to access control panels and usually are installed very close to the access control panels. The WPIMs installation locations are determined by the location of the WAPMs with which they will communicate using RF.

The WAPMs are installed at access points where access will be controlled and/or monitored. Depending on the application and which WAPM is used, some wiring at the access point may be required.

Regardless of which WPIM or WAPM module is used, the communication link between the WPIM and WAPM is always RF.

This manual describes the installation of a Panel Interface Module (PIM-OTD) or a Panel Interface Module Expander (PIME-OTD), both of which are WPIMs.
1.2 Panel Interface Module (PIM) Components & Sales Models

The PIM is the wireless interface to an access control panel. Table 1-1 shows the PIM sales model and its options.

<table>
<thead>
<tr>
<th>Sales Model</th>
<th>PIM-OTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed Enclosure</td>
<td>![Closed Enclosure Image]</td>
</tr>
<tr>
<td>Opened Enclosure</td>
<td>![Opened Enclosure Image]</td>
</tr>
<tr>
<td>Expander</td>
<td>PIME-OTD</td>
</tr>
<tr>
<td>Antenna</td>
<td>internal “c”</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>remote</td>
</tr>
<tr>
<td></td>
<td>(ANT-REMOTE)</td>
</tr>
<tr>
<td></td>
<td>(ANT-6DB-FLAT)</td>
</tr>
</tbody>
</table>

Table 1-1 – PIM Options
<table>
<thead>
<tr>
<th>MODEL</th>
<th>ENCLOSURE</th>
<th>MAXIMUM NUMBER OF WAPMs</th>
<th>LOCATION</th>
<th>INTERFACE/DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM-OTD</td>
<td>plastic</td>
<td>2</td>
<td>indoor</td>
<td>Magnetic (clock & data) or Wiegand (data1/data0)</td>
</tr>
<tr>
<td>PIM-OTD-485</td>
<td>plastic</td>
<td>16</td>
<td>indoor</td>
<td>RS485</td>
</tr>
<tr>
<td>PIME-OTD</td>
<td>n/a</td>
<td>2</td>
<td>indoor</td>
<td>Magnetic (clock & data) or Wiegand (data1/data0)</td>
</tr>
<tr>
<td>ANT-REMOTE</td>
<td>plastic</td>
<td>n/a</td>
<td>indoor</td>
<td>Optional remote omni-directional antenna (0 DB gain)</td>
</tr>
<tr>
<td>ANT-6DB-PANEL</td>
<td>plastic</td>
<td>n/a</td>
<td>indoor</td>
<td>Optional remote directional panel antenna (6 DB gain)</td>
</tr>
</tbody>
</table>

Table 1-2- PIM Sales Model Table
2. Determining the Best PIM Location

It is important to determine the best mounting location for the PIM to insure that reliable RF communications between the PIM and its WAPMs can be achieved.

Please refer to the WAPM installation manual for determining the best location for the WAPM.

2.1 PIM Location Guidelines

NOTE: A WAPM located with a substantial steel barrier intervening between it and the PIM may require alternate PIM placement in order to ensure reliable RF communications. In these applications, mount the PIM remote from the access control panel. Choose the PIM location to prevent “shadowing” of the WAPM from PIM radio transmissions.

2.1.1 If the PIM and WAPM are to be used in a line of sight application (i.e. the PIM antenna can visually see the WAPM antenna with no obstructions), then the maximum distance between the PIM and WAPM is 1000’. If the WAPM is a MIRL (or an obsolete IRL), then the maximum distance is 600’.

2.1.2 If the PIM and WAPM are to be used in a building using normal construction, then the maximum distance between the PIM and WAPM is 200’ horizontally.

2.1.3 Always try to install the PIM on the same floor of a building as the WAPMs it controls.

2.1.4 If WAPM(s) are on another floor of a building (one floor up or down), cut the range by 100 feet for each floor away from the PIM.

2.1.5 Never install the PIM more than 1 floor away from its WAPMs.

2.1.6 Never install the PIM in a metal room or room with metal mesh in the walls unless a Remote Antenna Module is used and located outside the metal wall.

2.1.7 If possible, install the PIM halfway between all the WAPMs it will control and never more than 200 feet away from any. Remember to include the WAPMs that will be controlled by a PIME, if one is used.

2.1.8 Always mount the PIM so the antenna is vertical for best performance.

2.1.9 Install the PIM as far above the floor as possible, 6 feet is usually optimum for operation and maintenance.

2.1.10 If possible, mount the PIM so that is there are the minimum number of obstacles between the antennas of the PIM and the WAPM.

2.1.11 Line-of-sight means no obstructions ever. If obstructions like moving vehicles can block the line-of-sight, even if for very short times, reduce the specified range in half.

2.1.12 A PIM must, in all directions (sides, top, bottom, and back), have a minimum 1” separation from any metal surface. Therefore if the PIM must be mounted on a metal surface, though not recommended, the supplied 1” spacer kit (K384-003-001) must be used.

2.2 Pre-installation Wyreless Access™ Test

Once the best locations for the PIM and WAPM(s) have been determined, use this procedure to check performance prior to installation:

2.2.1 As close as possible to its exact mounting location, temporarily mount the WAPM to the access control point (i.e. a door, a gate, an elevator). Do not connect power yet.

2.2.2 Temporarily mount PIM in the exact location and orientation it is intended to be mounted.

2.2.3 If using a Remote Antenna Module, install the PIM antenna as indicated in Section 3.5.

2.2.4 Power the PIM with a 12-VDC supply capable of delivering 300 mA by connecting it to J1 – positive left, negative right (depending on PIM PCB being used. See Figure 3-1, or Figure 3-2).
2.2.5 Put the PIM into Link Mode (S1 or S2) for the WAPM (A or B) being tested (depending on PIM PCB being used see Figure 3-1, or Figure 3-2).

2.2.6 Go to the access point being tested. Make sure the access point is in its secure state (i.e. closed). Connect battery. Verify that linking has occurred. Depending on which WAPM is being tested and how it is wired, successful linking should be indicated at the WAPM by the green LED flashing and optionally by an internal sounder beeping. The number of green flashes and audible beeps should be the same as the channel number that the PIM is set to. This linking process can take from 20-60 seconds to complete.

2.2.7 If linking occurred successfully, link second WAPM similarly, then proceed with installing the WAPM(s) and PIM.

2.2.8 If linking does not occur successfully, move the PIM 6-10 inches in any convenient direction (up, down, sideways) and repeat until all WAPMs link successfully. Once the linking is successful, then proceed with installing the WAPMs and PIM.

2.2.9 If still not successful, change channels and repeat or move PIM closer to the WAPMs and repeat.
3. Installing the Panel Interface Module (PIM)

There are two versions of the PIM printed circuit board (PCB): RS232 (Figure 3-1), and RS485 (Figure 3-2).

3.1 How to determine the version of PIM PCB

The version of PIM PCB being installed can be identified by observing which connectors are installed on the PCB. Compare the board being installed to Figure 3-1 and Figure 3-2.

3.1.1 RS232 PIM PCB (Figure 3-1)

If the RS232, 9-pin connector, J5, is installed and the RS485, 5-pin terminal block, J7, is missing then it is a RS232 PIM PCB

3.1.2 RS485 PIM PCB (Figure 3-2)

The RS485 PIM PCB can be uniquely identified in one of two ways:

- If the RS232, 9-pin connector, J5, is installed and the RS485, 5-pin terminal block, J7, is installed it is a RS485 PIM PCB
- If the Access Point A, 8-pin panel connector, J3 and the Access Point B, 8-pin panel connector, J4, are missing it is a RS485 PIM PCB
Figure 3-1 – RS232 PIM & PIME Printed Circuit Board (PCB)
3.2 PIM PCB Functional Components

NOTE: The components on the left side of the PIM PCB are for Access Point A (AP A) while components on the right are for Access Point B (AP B).

3.2.1 Access Control Panel Connections

PIM signal wiring connections to an access control panel are accomplished using two 8-Pin Connectors. J3 is used to connect Access Point A (AP A) and J4 is used for Access Point B (AP B) (depending on PIM PCB being used, see Figure 3-1 or Figure 3-2).

3.2.2 DC Power Connection

DC power is connected to the PIM via connector J1. Positive is the top pin, negative is the bottom pin (depending on PIM PCB being used, see Figure 3-1 or Figure 3-2).

3.2.3 RS485 Connection

A serial RS485 connection can be made to the PIM using connector J7. This connection is used for system configuration and future features (depending on PIM PCB being used, see Figure 3-1 or Figure 3-2).
For additional information about system configuration please refer to the “Configuring & Operating a Wyreless Access System” manual and the “Configuration & Demonstration Tool (CDT)” manual.

3.2.4 PIM RF Channel & Status

The RF channel to be used to communicate with the Access Points is selected using a 4 position, single pole, single throw DIP switch SW7 (depending on PIM PCB being used, see Figure 3-1 or Figure 3-2).

The overall status of the PIM is indicated using the green LED, CR15.

For additional information about setting the RF channel and how the PIM status is displayed please refer to the “Configuring & Operating a Wyreless Access System” manual.

3.2.5 Access Point Link & Status

A PIM/Access Point link mode process is initiated using a Link Switch, either S1 for AP A or S2 for AP B (depending on PIM PCB being used, see Figure 3-1 or Figure 3-2).

The status of an Access Point is indicated using two LEDs: one for the real time status and one for trouble status. A red/green LED is used for real time status: CR9 for AP A and CR6 for AP B. A red LED is used for trouble status: CR10 for AP A and CR7 for AP B (depending on PIM PCB being used, see Figure 3-1 or Figure 3-2).

For additional information about Access Point linking and status please refer to the “Configuring & Operating a Wyreless Access System” manual.

3.2.6 PIM Reset Switch

Switch S3 is provided to reset the PIM without having to cycle power. Normally this will never have to be done.

For additional information about the PIM Reset switch please refer to the “Configuring & Operating a Wyreless Access System” manual.

3.2.7 PIM Programming Connector

A programming connector (J2) is provided to allow new PIM firmware versions to be installed (depending on PIM PCB being used, see Figure 3-1 or Figure 3-2).

For additional information about PIM programming, please refer to the “Configuring & Operating a Wyreless Access System” manual.

3.2.8 PIM Tamper Switch

A tamper switch (SW1) is provided to indicate when the PIM enclosure cover is open (depending on PIM PCB being used, see Figure 3-1 or Figure 3-2).

For additional information about PIM tamper switch refer to the “Configuring & Operating a Wyreless Access System” manual.
3.3 Tools – Hardware Required

- Hammer
- 9/32” drill bit
- Flat and Phillips head screwdrivers (1/8” wide flat blade for screw terminals)
- Pencil
- Mounting Kit (K381-000-001), provided, including four #8 X 1 ½” screws and four heavy-duty anchors
- Mounting Kit (K384-003-001), provided, including four #8 X 2 ½” screws and four 1” round by 1” high (1” O.D. x 1”) spacers

3.4 Mounting the PIM

3.4.1 When using the internal “C” antenna with the PIM-OTD or PIME-OTD, wire routing inside the enclosure is very important. Improper wire routing will reduce the RF range. Keep the wires inside the enclosure as short as possible (i.e. do not coil an excess wire inside the enclosure). (Figure 3-3 & Figure 3-4).

NOTE: If the internal “C” antenna is to be used, then do not move or distort the “C” antenna in any way or RF performance will be degraded!
There are dimples on the sides and bottom of the PIM-OTD enclosure indicating the only proper place to drill holes (Figure 3-5 & Figure 3-6).

NOTE: There are two dimples on the top of the PIM-OTD enclosure (Figure 3-7). These are for remote antenna installation and are not to be used for signal/power wiring.

Using these dimples, drill hole(s) in the PIM-OTD enclosure, to accommodate the size and number of entry/exit connectors to be used.

NOTE: When drilling, make certain that the drill bit does not damage any electronics inside the enclosure. Use light drill pressure so that the bit does not enter the enclosure very far when the bit breaks through the inside of the enclosure.

The electronics may be removed before drilling the holes. To remove the electronics, only remove the four screws holding the black mounting plate to the enclosure. Never loosen or remove any of the screws which secure the electronics to the black mounting plate.

![Figure 3-5 - PIM-OTD Dimples for Hole Drilling](image1)

Figure 3-5 - PIM-OTD Dimples for Hole Drilling

![Figure 3-6 – PIM-OTD Dimples for Hole Drilling](image2)

Figure 3-6 – PIM-OTD Dimples for Hole Drilling

![Figure 3-7 PIM-OTD Dimples for Remote Antenna Holes](image3)

Figure 3-7 PIM-OTD Dimples for Remote Antenna Holes

3.4.2 Place the PIM-OTD, with its cover removed, against the wall in the position it was successfully “link” tested (Section 2.2)

3.4.3 Using the four mounting holes in the corner of the PIM-OTD housing as a template, mark these holes with a pencil.

3.4.4 Set the PIM-OTD down and drill the four holes with a 9/32” diameter drill bit, 1 ¾” deep.

3.4.5 Insert the four anchors provided (kit: K381-000-001) firmly into the holes so they are basically flush with the wall.

3.4.6 If the PIM-OTD is to be mounted on a non-metallic surface or mounted where there is no metal within 1” of the back of the PIM-OTD, use the #8, 1½” screws provided (kit: K381-000-001) to attach the PIM-OTD to the wall.

If the PIM-OTD is to be mounted on a metallic surface or mounted where there maybe a metal within 1” of the back of the PIM-OTD, use the 1” round by 1” high (1” O.D. x 1”) spacers and the #8, 2½” screws provided (kit: K384-003-001) to attach the PIM-OTD 1” from the wall.
3.5 Installing the Antenna

3.5.1 Internal C Antenna
If the internal C antenna is to be used, then no antenna installation or adjustment is required.

3.5.2 Remote Omni Antenna (ANT-REMOTE)
If a Remote Omni Antenna is to be used refer the “Remote Antenna Module Installation” manual.

3.5.3 Remote Directional Panel Antenna (ANT-6DB-FLAT)
If a Remote Directional Panel Antenna is to be used refer the “Remote Antenna Module Installation” manual.
3.6 Connecting the Original PIM PCB to the Access Control Panel

Review the PIM Functional Components from Section 3.1 before connecting the Original PIM PCB to an access control panel.

Caution: Disconnect the access control panel’s power and standby batteries while wiring the PIM to the panel.

Warning! Because each access control panel is different, always check the panel’s instruction manual for appropriate interface wiring.

Use shielded 8-conductor wire for the signal wiring between PIM and the access control panel. Refer to Table 5-1 for maximum wiring lengths and cable specifications.

There are up to 8 different wiring connections that need to be made between the PIM and the Access Control Panel. These 8 connections may need to be made for each of the Access Points on the PIM if both are used:

3.6.1 DC Power (required)

Refer to J1 section of Table 3-1 & Figure 3-8 for how to connect DC power to the PIM. This connection is always required regardless of the system application or configuration.

3.6.2 Access Point Card Reader (optional)

Refer to J3/J4 section of Table 3-1 & Figure 3-8 for how to connect the Card Reader signals from the PIM to the access control panel. These connections are optional depending on the system application or configuration, but they will always be required if a card reader or other Wiegand or Clock & Data device is used at the WAPM. Make certain there is at least one signal ground connection between the PIM and the access control panel.

3.6.3 Access Point Strike Signal (optional)

Refer to J3/J4 section of Table 3-1 & Figure 3-8 for how to connect the Strike signal from the access control panel to the PIM. This connection is optional depending on the system application or configuration. It is required if action is to be taken by the WAPM based on a valid credential or an indication of a valid credential is wanted at the WAPM. Make certain there is at least one signal ground connection between the PIM and the access control panel.

3.6.4 Access Point (Door) Position Signal (optional)

Refer to J3/J4 section of Table 3-1 & Figure 3-8 for how to connect the Access Point (Door) Position Switch signal from the PIM to the access control panel. This connection is optional depending on the system application or configuration. Make certain there is at least one signal ground connection between the PIM and the access control panel.

3.6.5 Access Point Request to Exit Signal (optional)

Refer to J3/J4 section of Table 3-1 & Figure 3-8 for how to connect the Request to Exit signal from the PIM to the access control panel. This connection is optional depending on the system application or configuration. Make certain there is at least one signal ground connection between the PIM and the access control panel.

3.6.6 Access Point Trouble Signal (optional)

Refer to J3/J4 section of Table 3-1 & Figure 3-8 for how to connect the Trouble signal from the PIM to the access control panel. This connection is optional depending on the system application or configuration, but strongly recommended for all applications. Make certain there is at least one signal ground connection between the PIM and the access control panel.

After all required connections have been made connect the power and standby batteries to the panel.
<table>
<thead>
<tr>
<th>PIM</th>
<th>PIM SIGNAL</th>
<th>ACCESS PANEL SIGNAL</th>
<th>DESCRIPTION/EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>12V+</td>
<td>+7-14 VDC</td>
<td>PIM inputs for 12 VDC power. The PIM works from 7 to 14 VDC, and draws 250mA max during transmit. The access control panel’s reader power outputs may not source enough current for the PIM. If this is the case use the access control panel’s main regulated 12 VDC power supply or a separate UL approved 12 VDC power supply. Observe polarity.</td>
</tr>
<tr>
<td></td>
<td>12V-</td>
<td>DC Ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STK-NO</td>
<td>Normally Open Strike Relay Contact</td>
<td>PIM input, used to monitor the state of the access panel’s strike relay. The STK-NO signal should be connected to the normally open terminal of the strike relay. The STK-COM signal should be connected to the common terminal of the strike relay. This connection only needs to be made if the Access Point needs to be unlocked (door), raised (gate), or a valid credential needs to be indicated at the WAPM. The PIM circuit is designed for connection to dry strike relay contacts (i.e. no external voltage should be applied to the strike relay contacts).</td>
</tr>
<tr>
<td></td>
<td>STK-COM</td>
<td>Common Strike Relay Contact</td>
<td>If the access control panel does not have dry strike relay contacts, please contact Schlage for interfacing advice (section 6).</td>
</tr>
<tr>
<td>J3</td>
<td>EXIT REQ</td>
<td>Request To Exit Input</td>
<td>PIM open collector output, used to indicate when the Access Point is making a request to exit and needs to be connected to the access control panel’s request to exit input (15 VDC max, 50mA max). This connection only needs to be made if the Access Point needs to have a request to exit function. Default configuration: low = request to exit. Logic polarity configurable.</td>
</tr>
<tr>
<td></td>
<td>DOOR STAT</td>
<td>Door Status Input</td>
<td>PIM open collector output, used to indicate the position of the Access Point’s portal: open or closed (15 VDC max, 50mA max). This connection only needs to be made if the Access Point needs to know the Access Point’s portal state. Default configuration: low = door closed. Logic polarity configurable.</td>
</tr>
<tr>
<td></td>
<td>TROUBLE</td>
<td>General Purpose Alarm Input</td>
<td>PIM open collector output, used to indicate that the Access Point has some type of trouble that needs attention or maintenance (15 VDC max, 50mA max). This connection only needs to be made if the Access Point trouble status needs to be monitored, which is strongly recommended! Default configuration: low = trouble. Logic polarity configurable.</td>
</tr>
<tr>
<td></td>
<td>DATA/D0</td>
<td>Data or Data0 Input</td>
<td>PIM CMOS outputs, used to present card data to the access control panel. Generally, if the Access Point uses a magnetic reader then the PIM will present clock & data signals to the access control panel. If the Access Point uses a Wiegand or Proximity reader then the PIM will present data1/data0 signals to the access control panel. It is easy to get these signals reversed, if the first hookup fails to work, try switching the wires at these terminals. (6 VDC max, 50mA max).</td>
</tr>
<tr>
<td></td>
<td>CLK/D1</td>
<td>Clock or Data1 Input</td>
<td>This is a common signal ground for the EXIT REQ, DOOR STAT, TROUBLE, DATA/D0, and CLK/D1 signals. Connect this to the reader ground (common) at the ACP.</td>
</tr>
<tr>
<td></td>
<td>GROUND</td>
<td>Signal Ground</td>
<td>A bi-directional RS485 communications port used with Wyreless Access system configuration tool and future interfaces to access control panels... For additional information please refer to the “Configuring & Operating a Wyreless Access System” manual and the “Configuration & Demonstration Tool (CDT)” manual.</td>
</tr>
</tbody>
</table>

Table 3-1 – Original PIM to Access Control Panel Connections
Figure 3-8 - Typical PIM to Access Control Panel Wiring Diagram

Panel Interface Module (PIM)

Access Control Panel (ACP)

Notes:
1. Unsupervised, ground switched inputs to panel shown. Some access control panels require supervised inputs and/or "dry contact" isolated inputs. Find diagrams for these at www.recognition-source.com or contact Recognition Source Technical Service.

2. See Table 3-3 for D0/D1 details. Internal 5 V pull-up resistors (1 KΩ) are standard, configurable to open collector by removing jumpers.

3. PIM can also be powered by an optional Recognition Source Power Supply (PS-6VDC-800MA).
3.7 Connecting the RS232 PIM PCB to the Access Control Panel

Review the PIM Functional Components from Section 3.1 before connecting the RS232 PIM PCB to an access control panel.

Caution: Disconnect the access control panel’s power and standby batteries while wiring the PIM to the panel.

Warning! Because each access control panel is different, always check the panel’s instruction manual for appropriate interface wiring.

Use shielded 8-conductor wire for the signal wiring between PIM and the access control panel. Refer to Table 5-1 for maximum wiring lengths and cable specifications.

There are 6 different wiring connections that need to be made between the PIM and the Access Control Panel. These 6 connections need to be made for each of the Access Points on the PIM if both are used:

3.7.1 DC Power (required)

Refer to J1 section of Table 3-3 & Figure 3-8 for how to connect DC power to the PIM. This connection is always required regardless of the system application or configuration.

3.7.2 Access Point Card Reader (optional)

Refer to J3/J4 section of Table 3-3 & Figure 3-8 for how to connect the Card Reader signals from the PIM to the access control panel. This connection is optional depending on the system application or configuration. Make certain there is at least one signal ground connection between the PIM and the access control panel.

3.7.2.1

The Card Reader signals on earlier PIM versions are driven by open-collector (open drain) devices. If the access control panel does not have internal pull-up resistors then external pull-up resistors (external to the access control panel) will need to be installed. See Schlage Application Note A664-006-xxx: "When Are PIM External Pull-Up Resistors Needed?" (available at www.irsupport.net)

3.7.2.2

Later versions of the PIM RS232 PCB have optional pull-up resistors on the PCB. These pull-up resistors are enabled or disabled using PCB shorting blocks (jumpers) (Table 3-3). The PIM RS232 with pull-up resistors on the PCB are shipped with the pull-ups enabled.

<table>
<thead>
<tr>
<th>Shorting Block</th>
<th>Signal</th>
<th>Pull-ups Enabled (1Kohm to +5 VDC)</th>
<th>Pull-ups Disabled (open collector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J10</td>
<td>AP A Pull-ups CLK/D1</td>
<td>shorted</td>
<td>open</td>
</tr>
<tr>
<td>J9</td>
<td>AP B Pull-ups CLK/D1</td>
<td>shorted</td>
<td>open</td>
</tr>
<tr>
<td>J8</td>
<td>DATA/D0</td>
<td>shorted</td>
<td>open</td>
</tr>
<tr>
<td>J6</td>
<td>DATA/D0</td>
<td>shorted</td>
<td>open</td>
</tr>
</tbody>
</table>

Table 3-2 – PIM RS232 Pull-up Resistor Options

3.7.3 Access Point Strike Signal (optional)

Refer to J3/J4 section of Table 3-3 & Figure 3-8 for how to connect the Strike signal from the access control panel to the PIM. This connection is optional depending on the system application or configuration. Make certain there is at least one signal ground connection between the PIM and the access control panel.

3.7.4 Access Point (Door) Position Signal (optional)

Refer to J3/J4 section of Table 3-3 & Figure 3-8 for how to connect the Access Point (Door) Position Switch signal from the PIM to the access control panel. This connection is optional depending on the system application or configuration. Make certain there is at least one signal ground connection between the PIM and the access control panel.

3.7.5 Access Point Request to Exit Signal (optional)

Refer to J3/J4 section of Table 3-3 & Figure 3-8 for how to connect the Request to Exit signal from the PIM to the access control panel. This connection is optional depending on the system application...
or configuration. Make certain there is at least one signal ground connection between the PIM and the access control panel.

3.7.6 Access Point Trouble Signal (optional)

Refer to J3/J4 section of Table 3-3 & Figure 3-8 for how to connect the Trouble signal from the PIM to the access control panel. This connection is optional depending on the system application or configuration. Make certain there is at least one signal ground connection between the PIM and the access control panel.

After all required connections have been made connect the power and standby batteries to the panel.
<table>
<thead>
<tr>
<th>PIM</th>
<th>PIM SIGNAL</th>
<th>ACCESS PANEL SIGNAL</th>
<th>DESCRIPTION/EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>12V+</td>
<td>+7-14 VDC</td>
<td>PIM inputs for 12 VDC power. The PIM works from 7 to 14 VDC, and draws 250mA max during transmit. The access control panel’s reader power outputs may not source enough current for the PIM. If this is the case use the access control panel’s main regulated 12 VDC power supply or a separate UL approved 12 VDC power supply. Observe polarity.</td>
</tr>
<tr>
<td></td>
<td>12V-</td>
<td>DC Ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STK-NO</td>
<td>Normally Open Strike Relay Contact</td>
<td>PIM input, used to monitor the state of the access panel’s strike relay. The STRIKE signal should be connected to the normally open terminal of the strike relay. The GROUND signal should be connected to the common terminal of the strike relay. This connection only needs to be made if the Access Point needs to be unlocked (door) or raised (gate). The PIM circuit is designed for connection to dry strike relay contacts (i.e. no external voltage should be applied to the strike relay contacts).</td>
</tr>
<tr>
<td></td>
<td>STK-COM</td>
<td>Common Strike Relay Contact</td>
<td>If the access control panel does not have dry strike relay contacts, please contact Schlage for interfacing advice (section 6).</td>
</tr>
<tr>
<td></td>
<td>EXIT REQ</td>
<td>Request To Exit Input</td>
<td>PIM open collector output, used to indicate when the Access Point is making a request to exit and needs to be connected to the access control panel’s request to exit input (15 VDC max, 50ma max). This connection only needs to be made if the Access Point needs to have a request to exit function. Default configuration: low = request to exit. Logic polarity configurable.</td>
</tr>
<tr>
<td>J3</td>
<td>Door Status Input</td>
<td>DOOR STAT</td>
<td>PIM open collector output, used to indicate the position of the Access Point’s portal: open or closed (15 VDC max, 50ma max). This connection only needs to be made if the Access Point needs to know the Access Point’s portal state. Default configuration: low = door closed. Logic polarity configurable.</td>
</tr>
<tr>
<td>J4</td>
<td>Door Status Input</td>
<td>TROUBLE</td>
<td>PIM open collector output, used to indicate that the Access Point has some type of trouble that needs attention or maintenance (15 VDC max, 50ma max). This connection only needs to be made if the Access Point trouble status needs to be monitored Default configuration: low = trouble. Logic polarity configurable.</td>
</tr>
<tr>
<td></td>
<td>Data or Data 0 Input</td>
<td>DATA/D0</td>
<td>PIM outputs shipped with 1Kohm pull-up resistors to +5VDC option enabled (configurable to open collector by removing PCB jumpers), used to present card data to the access control panel. Generally, if the Access Point uses a magnetic reader then the PIM will present clock & data signals to the access control panel. If the Access Point uses a Wiegand or Proximity reader then the PIM will present data1/data0 signals to the access control panel. It is easy to get these signals reversed, if the first hookup fails to work, try switching the wires at these terminals. (6 VDC max, 50ma max). Refer to section 3.7.2 above, for pull-up resistor options for these signals. Default configuration: pull-up resistors = enabled. Configurable via PCB jumpers.</td>
</tr>
<tr>
<td></td>
<td>Clock or Data 1 Input</td>
<td>CLK/D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal Ground</td>
<td>GROUND</td>
<td>This is a common signal ground for the EXIT REQ, DOOR STAT, TROUBLE, DATA/D0, and CLK/D1 signals.</td>
</tr>
<tr>
<td>J5</td>
<td>TD Transmit Data</td>
<td>PIN 2</td>
<td>A RS232 communications port used with Wyreless Access system configuration tool. For additional information please refer to the “Configuring & Operating a Wyreless Access System” manual and the “Configuration & Demonstration Tool (CDT)” manual.</td>
</tr>
<tr>
<td></td>
<td>RD Receive Data</td>
<td>PIN 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal Ground</td>
<td>PIN 5</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-3 – RS232 PIM to Access Control Panel Connections
3.8 Connecting the RS485 PIM PCB to the Access Control Panel

Review the PIM Functional Components from Section 3.1 before connecting the RS485 PIM to an access control panel.

Caution: Disconnect the access control panel’s power and standby batteries while wiring the PIM to the panel.

Warning! Because each access control panel is different, always check the panel’s instruction manual for appropriate interface wiring.

Use shielded 3 or 5 conductor wire for the signal wiring between PIM and the access control panel. Refer to Table 5-1 for maximum wiring lengths and cable specifications.

There are 2 different wiring connections that need to be made between the PIM and the Access Control Panel.

3.8.1 DC Power (required)

Refer to J1 section of Table 3-4 & Figure 3-8 for how to connect DC power to the PIM. This connection is always required regardless of the system application or configuration.

3.8.2 RS485 Connections (required)

Refer to J7 section of Table 3-4 for how to connect the RS485 signals from the RS485 PIM to the access control panel.

Notes about making a RS485 connection: There is some confusion about the “A” and “B” designations for the RS485 signals. The EIA RS-485 Specification labels the data wires as “A” and “B” but many RS485 products label their wires “+” and “-.” Some products associate the “+” signal with “A”, some with “B”. The bottom line is that the “+” should always be connected to the “+” and the “-” to the “-” however it is designated. Reversing the polarity will not damage either RS485 device, it just won’t communicate. So take your best guess (a 50/50 chance) about connecting “+” to “+” and “-” to “-” and if it doesn’t work, switch them!

<table>
<thead>
<tr>
<th>PIM</th>
<th>PIM SIGNAL</th>
<th>ACCESS PANEL SIGNAL</th>
<th>DESCRIPTION/EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>12V+</td>
<td>+7-14 VDC</td>
<td>PIM inputs for 12 VDC power. The PIM works from 7 to 14 VDC, and draws 250mA max during transmit. The access control panel’s reader power outputs may not source enough current for the PIM. If this is the case use the access control panel’s main regulated 12 VDC power supply or a separate UL approved 12 VDC power supply. Observe polarity.</td>
</tr>
<tr>
<td></td>
<td>12V-</td>
<td>DC Ground</td>
<td></td>
</tr>
<tr>
<td>J5</td>
<td>PIN 2</td>
<td>TD Transmit Data</td>
<td>A RS232 communications port used with Wyreless Access system configuration tool. For additional information please refer to the “Configuring & Operating a Wyreless Access System” manual and the “Configuration & Demonstration Tool (CDT)” manual.</td>
</tr>
<tr>
<td></td>
<td>PIN 3</td>
<td>RD Receive Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PIN 5</td>
<td>Signal Ground</td>
<td></td>
</tr>
<tr>
<td>J7</td>
<td>Signal Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TB+</td>
<td>+ Transmit Data</td>
<td>A full or half duplex, 2 or 4 wire, bi-directional RS485 communications port for interfacing to access control panels. For a 2 wire RS485 installation refer to Table 3-5</td>
</tr>
<tr>
<td></td>
<td>RB+</td>
<td>+ Receive Data</td>
<td>For a 4 wire RS485 installation refer to Table 3-6</td>
</tr>
<tr>
<td></td>
<td>TA-</td>
<td>- Transmit Data</td>
<td>Note: Transmit and Receive nomenclature are with respect to the PIM (i.e. Transmit = data sent from the PIM, Receive = data sent to the PIM)</td>
</tr>
<tr>
<td></td>
<td>RA-</td>
<td>- Receive Data</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-4 – RS485 PIM to Access Control Panel Connections
After all required connections have been made connect the power and standby batteries to the panel.

This completes the installation of the PIM/PIME.

If the Wyreless Access Point Modules (WAPM) that this PIM/PIME will control are not installed yet, now is the time to install them, please refer to the appropriate ACP Installation Manual.

If the Wyreless Access Point Modules (WAPM) that this PIM/PIME will control are installed, then you are ready to configure your Wyreless Access System, please refer to the “Configuring & Operating a Wyreless Access System” manual.
4. **Installing a Panel Interface Module Extender**

The PIM-OTD can be expanded to control two additional access points by adding a Panel Interface Module Extender (PIME-OTD).

Installing an Extender permits one PIM-OTD enclosure (outdoor) to control two additional access points for a total of four. The PIME-OTD is a PCB identical to the PCB in a standard PIM-OTD. The PIME-OTD mounts in the PIM-OTD enclosure to the right of the standard PIM-PCB using four 3/8”, #6 thread forming screws, provided (Figure 4-1).

Once the Extender is mechanically mounted in the PIM-OTD enclosure, follow the instructions in sections 3.5 & 3.6 to install the Extender antenna and connect the Extender to the access control panel. The installation instructions in sections 3.5 & 3.6 are written for a PIM, when installing a PIME-OTD substitute PIME-OTD where ever PIM is found.

NOTE: If the PIME-OTD is installed after the PIM-OTD was installed it may be necessary to re-evaluate if the current PIM-OTD location is optimum for all the WAPMs that this location will control (see section 2).

![Figure 4-1 – PIME-OTD PCB Location in a PIM-OTD](image-url)
5. PIM/PIME Cable/Wire Specifications

<table>
<thead>
<tr>
<th>Application</th>
<th>Part Number</th>
<th>AWG</th>
<th>Description</th>
<th>Maximum Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Power Input</td>
<td>Belden 8760</td>
<td>18</td>
<td>2 conductor</td>
<td>1,000’</td>
</tr>
<tr>
<td>RS485</td>
<td>Belden 9842 or 9841</td>
<td>24</td>
<td>3 conductor shielded</td>
<td>1,000’</td>
</tr>
<tr>
<td>PIM to Access Control Panel</td>
<td>Alpha 1298C</td>
<td>22</td>
<td>8 conductor shielded</td>
<td>500’</td>
</tr>
</tbody>
</table>

Table 5-1 – PIM-OTD Cable/Wire Specifications
6. Contacting Technical Support

For questions regarding Wyreless Access™:

irsupport.net

(860) 584-9158
(860) 584-2136 fax
7. **FCC/UL Compliance & Warnings**

7.1 **FCC Compliance**

- This device has been authorized by the FCC Rules and Industry Canada.
- This device complies with the limits for a Class B digital device and a Class B intentional radiator, pursuant to Part 15 of the FCC Rules and with RSS-210 of Industry Canada. Operation is subject to the following two conditions: (1) This device may cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
- The Wyreless Access System Component must be installed by qualified professionals or contractors in accordance with FCC part 15.203, Antenna Requirements.
- Do not use any antenna other than the one provided for the unit.

7.2 **UL Compliance**

- The Panel Interface Module (PIM-OTD) is listed under UL294 as an access control system accessory.
- Access equipment manufactured and/or sold by Schlage, is not rated for, or intended for use in life safety installations.
- For UL installations use Schlage Power Supply, model PS-12VDCR-500mA UL listed class 2 power supply.
- For UL installations the Panel Interface Module enclosure (PIM-OTD) must be mounted in a secure area.
- The Panel Interface Module’s (PIM-OTD) and Panel Interface Module Expander’s (PIME-OTD) maximum standby current at 12 VDC is 70mA.

7.3 **Warnings**

- RF Exposure - To comply with FCC RF exposure requirements for mobile transmitting devices this transmitter should only be used or installed at locations where there is normally at least a 20 cm separation between the antenna and all persons.
- Do not co-locate and operate in conjunction with any other antenna or transmitter.
- Changes or modifications not expressly approved by Schlage could void the user's authority to operate the equipment.
8. Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1.0</td>
<td>11/12/01</td>
<td>preliminary in house release for comments</td>
</tr>
<tr>
<td>X1.1</td>
<td>11/13/01</td>
<td>fixed grammar, added PIME PCB figure, embellished overview section 1.1, added part number</td>
</tr>
<tr>
<td>001</td>
<td>11/15/01</td>
<td>released for publication</td>
</tr>
<tr>
<td>X02</td>
<td>11/20/01</td>
<td>fixed grammar, modified footer for two sided printing, added FCC & warning section</td>
</tr>
<tr>
<td>002</td>
<td>11/28/01</td>
<td>released for publication</td>
</tr>
<tr>
<td>003</td>
<td>12/17/01</td>
<td>added RF range info to section 2.1, removed battery references from section 6, updated logos, released for publication</td>
</tr>
<tr>
<td>004</td>
<td>12/27/01</td>
<td>added PIM-OTD info, released for publication</td>
</tr>
<tr>
<td>005</td>
<td>01/17/02</td>
<td>added sales model table, added UL ACP compatibility, added Access Point Card Reader section (3.52), released for publication</td>
</tr>
<tr>
<td>006</td>
<td>05/16/02</td>
<td>Added PIM-OTD & PIME-OTD to title page, changed UL Compliance section regarding access control panel & power supply requirements, added Cable/Wire Specification section, added PIM/metal minimum distance paragraphs, modified how a PIME is installed</td>
</tr>
<tr>
<td>007</td>
<td>05/24/02</td>
<td>added PIM-ELEV, PIM-485-X, and PIME variations, edited Panel Interface Module (PIM) Components & Sales Models section showing all three enclosures, added new models to Sales Model Table, edited Installing the Panel Interface Module (PIM) section showing all three PCB variations</td>
</tr>
<tr>
<td>008</td>
<td>12/17/02</td>
<td>updated PIM sales model nomenclature, removed PIM-ELEV references, added section about possibly needing pull up resistors on reader data/clock lines</td>
</tr>
<tr>
<td>009</td>
<td>03/07/03</td>
<td>added PIM version with pull-up resistors</td>
</tr>
<tr>
<td>010</td>
<td>08/01/03</td>
<td>removed knockout mention on PIM-OTD, added drilling instructions for PIM-OTD, fixed some incorrect table references in section 0 & 3.8</td>
</tr>
<tr>
<td>011</td>
<td>09/16/03</td>
<td>updated wiring diagram</td>
</tr>
<tr>
<td>012</td>
<td>02/20/04</td>
<td>deleted all PIM, PIME, ANT-ONMI, & ANT-6DB-YAGI sales model references, added UL required maximum standby current specification</td>
</tr>
<tr>
<td>A</td>
<td>12/16/04</td>
<td>Changed logo and contact information</td>
</tr>
</tbody>
</table>