SCHLAGE – ND SERIES LOCKS

LOCKS – ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND 80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

Schlage ND Series Lock

This EPD was created using a UL-verified EPD generator for Allegion's full product portfolio. For additional product specific EPDs, please contact Allegion at Tim.Weller@allegion.com.

Allegion is pioneering safety by protecting people where they live and work – and protecting our environment at the same time. We promote the health and safety of our employees, customers and local community members worldwide through our commitment to conducting business in a safe and environmentally responsible manner.

Additionally, Allegion recognizes the value of the Leadership in Energy and Environmental Design (LEED) rating system to building environmentally safe and sustainable structures. By using Life Cycle Assessment and Environmental Product Declarations, we aim to provide our customers with the information they need to make decisions regarding their own sustainable building concepts and green solutions.

At Allegion, we value the importance of a cleaner world and are committed to being a responsible member of our global communities.

Allegion plc Schlage ND Series Locks

LOCKS – ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND 80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

EPD PROGRAM AND PROGRAM OPERATOR NAME, ADDRESS, LOGO, AND WEBSITE	UL Environment 333 Pfingsten Road Northbrook, IL 60611	https://www.ul.com/ https://spot.ul.com
GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER	General Program Instructions v.2.5 March 20	020
MANUFACTURER NAME AND ADDRESS	Allegion plc 3899 Hancock Expressway, Colorado Spring	gs, CO 80911
DECLARATION NUMBER	4789828313.104.1	
DECLARED PRODUCT & FUNCTIONAL UNIT OR DECLARED UNIT	Schlage ND Series Locks One unit of product for 75 Years	
REFERENCE PCR AND VERSION NUMBER	UL PCR Part A, version 3.2 2018 UL Part B Builders Hardware, version 1.0 20	
DESCRIPTION OF PRODUCT APPLICATION/USE	Installed on a door exit device to facilitate el designed for commercial use.	ectronic controlled entry and exit to a room and
PRODUCT RSL DESCRIPTION (IF APPL.)	25 Years	
MARKETS OF APPLICABILITY	North America, Europe, Global	
DATE OF ISSUE	July 1, 2021	
PERIOD OF VALIDITY	5 Year	
EPD TYPE	Product-Specific	
RANGE OF DATASET VARIABILITY	N/A	
EPD SCOPE	Cradle-to-Grave	
YEAR(S) OF REPORTED PRIMARY DATA	2019	
LCA SOFTWARE & VERSION NUMBER	GaBi ts Version 10.0.0.71	
LCI DATABASE(S) & VERSION NUMBER	GaBi Content Version 2020.2	
LCIA METHODOLOGY & VERSION NUMBER	CML 2001-Jan 2016 and TRACI 2.1	

	UL Environment
	PCR Review Panel
This PCR review was conducted by:	epd@ulenvironment.com
This declaration was independently verified in accordance with ISO 14025: 2006. □ INTERNAL	Grant R. Martin
	Grant R. Martin, UL Environment
This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:	Homes Sprin
	Thomas P. Gloria, Industrial Ecology Consultants

LIMITATIONS

Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc.

Accuracy of Results: EPDs regularly rely on estimations of impacts; the level of accuracy in estimation of effect differs for any particular product line and reported impact.

<u>Comparability</u>: EPDs from different programs may not be comparable. Full conformance with a PCR allows EPD comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible". Example of variations: Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.

Schlage ND Series Locks LOCKS - ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ALLEGION ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

1. Product Definition and Information

Allegion plc

1.1. **Description of Company**

Allegion Plc is a publicly traded global company that manufactures security door products.

More than 25 global brands included under the Allegion parent company umbrella are sold in 120 different countries. Among these brands are Schlage (locks), Von Duprin (exit devices), lves (hinges, stops and miscellaneous builders' hardware), Falcon (locks, exit devices and closers), Glynn Johnson (holders/ stops and push/pull latches), and Steelcraft (steel door and frames).

Allegion operates plants across the United States and internationally.

1.2. **Product Description**

ND Series locks are heavy-duty steel cylindrical locks designed for commercial use. Locks within this series are ANSI 156.2 Grade1 products. The LCA for this EPD is based on ND80 which was determined to be the representative product within the ND Series line which includes Mechanical locks - ND10, ND12,4 ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND 80, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND97, ND170 and Electrified locks – ND12EL, ND12EU, ND80EL, ND80EU, ND96EL, ND96EU. The impacts for the other products listed above fall within the ±10% threshold of the impacts of the representative product.

The products can be manufactured at either one of Schlage's manufacturing plants in Security, Colorado or Ensenada, Mexico. Specifically, the product is a weighted average product from the two manufacturing plants mentioned previously.

This EPD is representative of the Schlage manufacturing in the US and Mexico. It also accounts for international supply chains where relevant.

Figure 1: Schlage ND Series Lock

Allegion plc Schlage ND Series Locks

 ALLEGION
 ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

1.3. **Technical Requirements**

Table 1: Technical Details					
PARAMETER	MECHANICAL	ELECTRIFIED	Unit		
ANSI/ BHMA	A156.2, Grade 1	A156.25, Grade 1	-		
UL 10C	4'0" x 10' 0" 3-hour fire door	4'0" x 10' 0" 3-hour fire door	-		
Voltage	-	12-24 (Autodetect)	VDC		
Current	-	0.23 (Inrush) 0.01 (Holding)	A		

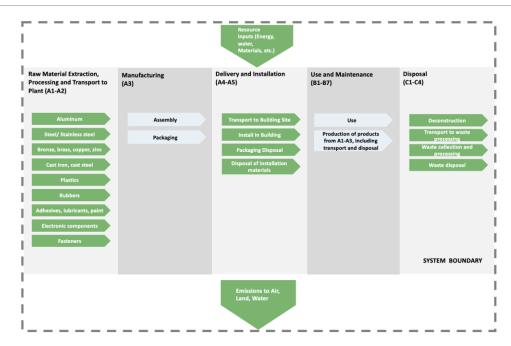
1.4. **Application**

These products can be used in commercial and multi-family applications.

1.5. **Declaration of Methodological Framework**

This EPD is cradle-to-grave, as represented by the flow diagram below. A summary of the life cycle stages can be found in Table 5. The reference service life (RSL) is outlined in

Table 8. The cut-off criteria are described in Cut-off Rules, and the allocation procedures are described in the Allocation section. No known flows are deliberately excluded from this EPD. Third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impacts in all impact categories required by the PCR.



Allegion plc Schlage ND Series Locks

LOCKS – ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

1.6. Material Composition

The materials that make up one average Schlage ND Series Lock are indicated in Table 2.

Table 2: Material Composition		
MATERIAL SCHLAGE ND SERIES		
Steel	42.40%	
Zinc	48.13%	
Brass	8.83%	
Nickel	<1%	
Aluminum	<1%	
Bronze	<1%	
Polyethylene	<1%	
Total	100%	

Table 2: Material Composition

1.7. Properties of Declared Product as Shipped

For shipping, all locks are packaged in an egg carton-type container and then packaged in cardboard packaging that contains 6 units. These boxes are then packaged into a larger box referred to as a Master Pack. These Master Packs are then palletized (if order is sufficiently large enough) and shipped via UPS, FedEx, or a common carrier. Exact weight and type of packaging per product are provided by the product engineering team.

Allegion plc

Schlage ND Series Locks LOCKS - ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ALLEGION ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

1.8. Manufacturing

Schlage ND Series locks are produced at Allegion's Ensenada, Mexico and Security, Colorado plants. The Ensenada plant produces both residential and commercial locks. The Security plant produces only commercial products. On average, 60-70% of the production is done at the Ensenada plant.

Manufacturing begins when trim components and other raw materials (such as key blanks and cores) are received from suppliers. Cardboard packaging in which the raw materials arrive in is recycled, while the plastic wrap in which the raw materials arrive in is landfilled. The trim components are then polished, chrome plated, and/or powder coated. The process requires both natural gas and electricity. Lock chassis and other sub-assemblies are assembled, and lock cylinders are broached, bored, and cut as required. Waste metals from the boring and cutting process are recycled. The cutting process also requires a cutting fluid, which is recycled through the process. This fluid was determined to be insignificant and excluded from the LCA. Once completed, the materials are then sent to lock assembly where they are combined into the final product.

1.9. Packaging

Packaging utilized in the shipment of the product is described in Table 2.

Table 3: Packaging

MATERIAL	SCHLAGE ND SERIES LOCK	Unit	DISPOSAL PATHWAY
Cardboard	5.48E-01	kg	Landfilled (20%), Incinerated (5%), Recycled (75%)

1.10. **Transportation**

It is assumed that all raw materials are distributed by truck and ship, based on global region. Distances were calculated based on the address of the major supplier of each material.

The transport distance to the end customers was calculated based on sales data for the year 2019. The transportation distance for all waste flows is assumed to be 200 km. Both distances are provided in the sub-category PCR in Section 3.12.

1.11. **Product Installation**

Detailed installation instructions are provided online at <u>Allegion.com</u>. Installation equipment is required though not included in the study as these are multi-use tools and the impacts per declared unit is considered negligible. Packaging waste is generated and disposed of in this stage. Packaging and installation waste disposal have been modeled as per guidelines in section 2.8.5 of PCR Part A. Packaging installation waste are either landfilled, incinerated or recycled.

Allegion plc Schlage ND Series Locks LOCKS - ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ALLEGION ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

Product should be installed by a professional and is subject to commercial building codes. Proper equipment, including protective equipment, should be used. Allegion products must be installed in full compliance with manufacturer's written instructions, which are included with each product.

Reuse, Recycling, and Energy Recovery 1.12.

Schlage ND Series Locks may be recycled or reused at the end of life. The LCA that this EPD is created from takes the conservative approach by assuming that all products are disposed of within the system boundary. However, potential recycling is calculated in Module D – Benefits Beyond System Boundary.

Disposal 1.13.

Disposal pathways in the EPD are modeled in accordance with disposal routes and waste classification referenced in Sections 2.8.5 and 2.8.6 of Part A: Life Cycle Assessment Calculation Rules and Report Requirements from UL Environment. This indicates an end-of-life split amongst landfill, recycling, and incineration pathways. For metals disposed in the United States, 85% is recycled and 15% is landfilled. All plastics are landfilled in the United States.

2. Life Cycle Assessment Background Information

2.1. **Functional Unit**

The functional unit according to the PCR varies according to the type of product but can be summarized as the amount of product required for one average Schlage ND Series Lock, installed in a North American standard building with an Estimated Service Life of 75 years as indicated in Table 3.

Table 4: Functional Unit Details				
ΝΑΜΕ	Schlage ND Series Lock	Unit		
Functional Unit	One unit of product f	for 75 years		
Mass per functional unit, including fasteners	7.62E+00	kg		
Reference Service Life (RSL)	25	years		
The fasteners needed for installation are supplied by the manufacturer with the product and therefore are accounted for together with the product.				

2.2. **System Boundary**

The type of EPD is cradle-to-grave. All LCA modules are included and are summarized in Table 5.

Table 5: Summary of Included Life Cycle Stages

Module Name	DESCRIPTION	ANALYSIS PERIOD	SUMMARY OF INCLUDED ELEMENTS
A1	Product Stage: Raw Material Supply	2019	Raw Material sourcing and processing as defined by secondary data.

Allegion plc

Schlage ND Series Locks

LOCKS - ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ALLEGION ND60, ND70, ND70, ND70, ND70, ND70, ND73, ND75, ND80, ND80EL, ND80EU, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EU, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

Module Name	DESCRIPTION	ANALYSIS PERIOD	SUMMARY OF INCLUDED ELEMENTS
A2	Product Stage: Transport	2019	Shipping from supplier to manufacturing site. Fuel use requirements estimated based on product weights and estimated distance.
A3	Product Stage: Manufacturing	2019	Energy, water and material inputs required for manufacturing products from raw materials. Packaging materials and manufacturing waste are included as well.
A4	Construction Process Stage: Transport	2019	Shipping from manufacturing site to project site. Fuel use requirements estimated based on product weights and mapped distances.
A5	Construction Process Stage: Installation	2019	Installation materials, installation waste and packaging material waste.
B1	Use Stage: Use	2019	The usage of this product does not result in direct material impacts or emissions.
B2	Use Stage: Maintenance	2019	The maintenance of the products does not involve any consumption of energy or resources.
B3	Use Stage: Repair	2019	The product does not require repairing once installed.
B4	Use Stage: Replacement	2019	Total materials and energy required to manufacture the replacements needed to meet the functional unit.
B5	Use Stage: Refurbishment	2019	The products do not require refurbishment once installed.
B6	Operational Energy Use	2019	Operational energy consumption for door products are assumed per Part B Steel doors PCR.
B7	Operational Water Use	2019	The use of the products does not impact the operational water use of the building.
C1	EOL: Deconstruction	2019	No inputs required for deconstruction.
C2	EOL: Transport	2019	Shipping from project site to landfill. Distance assumed to be 200 km from installation site to landfill.
C3	EOL: Waste Processing	2019	Waste processing not required. All waste can be processed as is.
C4	EOL: Disposal	2019	The disposal process of the product varies with the material type as per Part A Section 2.8.5. The impacts from landfilling and recycling are modeled based on secondary data.
D	Benefits beyond system	N/A	Module not declared.

2.3. **Estimates and Assumptions**

All estimates and assumptions are within the requirements of ISO 14040/44. The majority of the estimations are within the primary data. The primary data was collected as annual totals including all utility usage and production information. For the LCA, the usage information was divided by the production in pieces to create an energy and water use per declared unit, i.e., one unit of product. Other assumptions are listed below:

- It is assumed that there is a 10% scrap loss rate of the input raw material while manufacturing all of Allegion's • products.
- It is assumed stamping is the manufacturing process of the upstream metal part when either the appropriate • process wasn't available or was unknown.
- Several Proxies were chosen from materials within the model due to the lack of appropriate secondary data and ٠ have been described in the raw materials section.
- The use and selection of secondary datasets from GaBi The selection of which generic dataset to use to • represent an aspect of a supply chain is a significant value choice. Collaboration between LCA practitioners, Allegion associates and GaBi data experts was valuable in determining best-case scenarios in the selection of

Allegion plc

Schlage ND Series Locks LOCKS - ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ALLEGION ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

data. However, no generic data can be a perfect fit. Improved supply chain specific data would improve the accuracy of results, however budgetary and time constraints have to be taken into account.

The installation tools are used enough times that the per unit of product impacts are negligible. •

Cut-off Criteria 2.4.

All inputs in which data was available were included. Material inputs greater than 1% (based on total mass of the final product) were included within the scope of analysis. Material inputs less than 1% were included if sufficient data was available to warrant inclusion and/or the material input was thought to have significant environmental impact. Cumulative excluded material inputs and environmental impacts are less than 5% based on total weight of the functional unit.

There is no excluded material or energy input or output, except as noted below:

- Finishes which forms below 1% by mass of the total product weight per declared unit •
- As the tools used during the installation of the product are multi-use tools and can be reused after each installation, the per-functional unit impacts are considered negligible and therefore are not included. However, the electricity used to drill holes for installation has been included.
- Some material inputs may have been excluded within the secondary GaBi datasets used for this project. All • GaBi datasets have been critically reviewed and conform to the exclusion requirements of the PCR.

2.5. **Data Sources**

Primary data were collected by facility personnel and from utility bills and was used for all manufacturing processes. Whenever available, supplier data was used for raw materials used in the production process. When primary data did not exist, secondary data for raw material production was utilized from GaBi 10.0.0.71, GaBi Database Version 2020.2.

2.6. **Data Quality**

Geographical Coverage

The geographical scope of the manufacturing portion of the life cycle is Security, Colorado and Ensenada, Mexico. This EPD uses country specific energy datasets that take into account US eGrid specific energy and transportation mixes. Overall geographic data quality is considered good.

Time Coverage

Primary data were provided by Allegion associates and represent calendar year 2019. Using 2019 data meets the PCR requirement that manufacturer specific data be within the last 5 years. Time coverage of this data is considered very good. Data necessary to model cradle-to-gate unit processes was sourced from Sphera LCI datasets. All the datasets used in the model are within 5 years old except seven used for background modeling (six within 10 years and one of 11 years). All datasets rely on at least one 1-year average data. Overall time coverage of the datasets is considered good and meets the requirement of the PCR that all data be updated within a 10-year period. The specific time coverage of secondary datasets can be referenced in the dataset references table in the background LCA report.

Technological Coverage

Primary data provided by Allegion are specific to the technology that the company uses in manufacturing their product. It is site specific and considered of good quality. It is worth noting that the energy and water used in manufacturing the

Allegion plc Schlage ND Series Locks LOCKS - ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ALLEGION ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

product includes overhead energy such as lighting, heating and sanitary use of water. Sub-metering was not available to extract process only energy and water use from the total energy use. Sub-metering would improve the technological coverage of data quality. Data necessary to model cradle-to-grave unit processes was sourced from Sphera LCI datasets (GaBi). Technological coverage of the datasets is considered good relative to the actual supply chain of Allegion. While improved life cycle data from suppliers would improve technological coverage, the use of lower quality generic datasets does meet the goal of this EPD.

Completeness

The data included is considered complete. The LCA model included all known material and energy flows, with the exception of what is listed in Section 2.4. As pointed out in that section, no known flows above 1% were excluded and the sum of all excluded flows totals less than 5%.

2.7. **Period under Review**

The period under review is calendar year 2019.

2.8. Allocation

General principles of allocation were based on ISO 14040/44. Where possible, allocation was avoided. To derive a perunit value for manufacturing inputs such as electricity, thermal energy, and water, allocation based on total production in pieces was adopted. Discussions with Allegion staff divulged this was a more representative way to allocate the manufacturing inputs based on the manufacturing processes used and the types of products created. There are several other products that are assembled and packaged within the same facility. It is assumed that energy used for these purposes are the same across different products. Regarding secondary datasets, as a default, GaBi datasets use a physical mass basis for allocation.

1. Life Cycle Assessment Scenarios¹

Table 6: Transport to the building site (A4)			
ΝΑΜΕ	Schlage ND Series Lock	Unit	
Fuel type	Diesel	-	
Liters of fuel	38.43	l/100km	
Vehicle type	Truck – Trailer, basic enclosed / 50,000 lb. payload	-	
Transport distance	8.00E+02	km	
Capacity utilization	65	%	
Weight of products transported	2.54E+00	kg	
Volume of products transported	113.56	m ³	
Capacity utilization volume factor	1	-	

¹ The tables for B1, B2, B3, and, B5 are not included as these stages do not involve any flow input or output.

Allegion plc Schlage ND Series Locks

 ALLEGION
 ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

Table 7: Installation into the building (A5)				
Nаме	Schlage ND Series Lock	UNIT		
Fasteners	The fasteners for installation are accounted for in A1-A3.	kg		
Waste material at the construction site before waste processing, generated by production installation	5.48E-01	kg		
Pulp Recycling (75%)	4.11E-01	kg		
Pulp Landfilling (20%)	1.10E-01	kg		
Pulp Incineration (5%)	2.74E-02	kg		
Total Pulp Packaging Waste	5.48E-01	kg		
Biogenic carbon contained in packaging	0	kg CO ₂		
Direct Emission to ambient air, soil, and water	0	kg		
VOC emission	N/A	µg/m³		

Table 8: Reference Service Life

NAME	Schlage ND Series Lock	
RSL	25 years	years
Design application parameters	Installation per recommendation by manufacturer	-
An assumed quality of work	Accepted industry standard	-
Indoor environment	Normal building operating conditions	-
Use conditions	Normal use conditions	-
Maintenance	None required	-

Table 9: Replacement (B4)

Nаме	Schlage ND Series Lock	Unit
Reference Service Life	25	Years
Replacement cycles ((ESL/RSL)-1)	2	#
Replacement of worn parts	N/A	kg
Further assumptions for scenario development	N/A	-

Table 10: Operational Energy Use (B6) and Operational Water Use (B7) per declared unit for Schlage ND EU (Fail secure operation) Locks

NAME	SCHLAGE ND EU LOCKS	Unit			
Energy input	21.07	kWh			
Further assumptions for scenario development	 Power supply efficiency 90% 8 hours per workday with motor unb 20 additional actuations per workda 261 workdays per year 0.23A inrush, 0.01A holding 	•			

| 11 |

Allegion plc Schlage ND Series Locks

 ALLEGION
 ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

. . .

Table 11: End of life (C1-C4)

NAME		SCHLAGE ND SERIES LOCK	UNIT
Assumptions for scenario development	As per PCR Par B, the deconstruction of th product is collected with mixed construction the waste classification is based on the F non-metal waste is 100% landfilled, while landfilled, while	on waste. As required by the PCR CRA for North American region, a the metal waste is 85% recycled a	R Par A, and the
Collection process	Collected with mixed construction waste	1.99E+00	kg
	Non-Metal Landfilling (100%)	2.29E-02	kg
Recovery	Metal Waste Recycling (85%)	1.67E+00	kg
	Metal Waste Landfilling (15%)	2.95E-01	kg
Disposal	Product or material for final deposition	3.18E-01	kg

3. Life Cycle Assessment Results

Table 12: Description of the system boundary modules

	PROD	DUCT S	TAGE	ר וכ	STRUC ON CESS AGE	USE STAGE						USE STAGE END OF LIFE STAGE					
	A1	A2	A3	A4	A5	B1	B2	B3	В4	В5	B6	B7	C1	C2	C3	C4	D
	Raw material supply	Transport	Manufacturing	Transport from gate to site	Assembly/Install	Nse	Maintenance	Repair	Replacement	Refurbishment	Building Operational Energy Use During Product Use	Building Operational Water Use During Product Use	Deconstruction	Transport	Waste processing	Disposal	Reuse, Recovery, Recycling Potential
Cradle to Grave		х		x	х	x	x	х	x	х	х	х	х	x	Х	х	MND
	X = Included MND = Module not declared																

Environment

Allegion plc

Schlage ND Series Locks

LOCKS – ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

Schlage ND Series Locks 3.1.

Impact Category	A1-A3	A4	A5	B1	B2	B3	B4	B5	B	6	B7	C1	C2	C3	C4	D
		CML Impacts (Europe, Rest of World)														
									Mechanical	Electrified						
GWP [kg CO2 eq]	5.67E+00	6.20E-01	1.30E-01	0.00E+00	0.00E+00	0.00E+00	1.29E+01	0.00E+00	0.00E+00	1.15E+01	0.00E+00	0.00E+00	2.51E-02	0.00E+00	1.26E-02	MND
ODP [kg CFC 11 eq]	2.29E-11	7.98E-17	1.88E-17	0.00E+00	0.00E+00	0.00E+00	4.58E-11	0.00E+00	0.00E+00	5.56E-14	0.00E+00	0.00E+00	3.23E-18	0.00E+00	4.31E-17	MND
AP [kg SO2 eq]	2.89E-02	8.92E-04	1.45E-04	0.00E+00	0.00E+00	0.00E+00	6.01E-02	0.00E+00	0.00E+00	1.56E-02	0.00E+00	0.00E+00	5.52E-05	0.00E+00	5.33E-05	MND
EP [kg Phosphate eq]	4.45E-03	2.40E-04	8.25E-05	0.00E+00	0.00E+00	0.00E+00	9.61E-03	0.00E+00	0.00E+00	1.72E-03	0.00E+00	0.00E+00	1.48E-05	0.00E+00	1.45E-05	MND
POCP [kg Ethene eq]	1.81E-03	-2.10E-04	4.17E-05	0.00E+00	0.00E+00	0.00E+00	3.26E-03	0.00E+00	0.00E+00	1.22E-03	0.00E+00	0.00E+00	-1.82E-05	0.00E+00	3.34E-06	MND
ADP-elements [kg Sb eq]	7.66E-04	1.06E-07	2.36E-09	0.00E+00	0.00E+00	0.00E+00	1.53E-03	0.00E+00	0.00E+00	2.46E-06	0.00E+00	0.00E+00	4.29E-09	0.00E+00	2.68E-09	MND
ADP-fossil fuel [MJ]	5.89E+01	7.98E+00	1.46E-01	0.00E+00	0.00E+00	0.00E+00	1.35E+02	0.00E+00	0.00E+00	9.14E+01	0.00E+00	0.00E+00	3.23E-01	0.00E+00	1.57E-01	MND
							TR	ACI Impacts	(North Ameri	ica)						
AP [kg SO2 eq]	3.38E-02	1.17E-03	3.17E-04	0.00E+00	0.00E+00	0.00E+00	7.08E-02	0.00E+00	0.00E+00	1.76E-02	0.00E+00	0.00E+00	7.44E-05	0.00E+00	7.60E-05	MND
EP [kg N eq]	2.87E-03	1.72E-04	6.23E-05	0.00E+00	0.00E+00	0.00E+00	6.25E-03	0.00E+00	0.00E+00	1.33E-03	0.00E+00	0.00E+00	8.67E-06	0.00E+00	1.09E-05	MND
GWP [kg CO2 eq]	5.67E+00	6.20E-01	1.30E-01	0.00E+00	0.00E+00	0.00E+00	1.29E+01	0.00E+00	0.00E+00	1.15E+01	0.00E+00	0.00E+00	2.51E-02	0.00E+00	1.26E-02	MND
ODP [kg CFC 11 eq]	2.42E-11	7.98E-17	1.88E-17	0.00E+00	0.00E+00	0.00E+00	4.84E-11	0.00E+00	0.00E+00	5.56E-14	0.00E+00	0.00E+00	3.23E-18	0.00E+00	4.31E-17	MND
Resources [MJ]	5.23E+00	1.18E+00	2.35E-02	0.00E+00	0.00E+00	0.00E+00	1.30E+01	0.00E+00	0.00E+00	1.20E+01	0.00E+00	0.00E+00	4.76E-02	0.00E+00	2.61E-02	MND
POCP [kg O3 eq]	6.34E-01	2.57E-02	1.81E-03	0.00E+00	0.00E+00	0.00E+00	1.33E+00	0.00E+00	0.00E+00	2.50E-01	0.00E+00	0.00E+00	1.67E-03	0.00E+00	1.05E-03	MND
							C	arbon Emissi	ons and Uptal	ke						
BCRP [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
BCEP [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
BCRK [kg CO2]	2.14E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.28E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
BCEK [kg CO2]	0.00E+00	0.00E+00	2.23E-01	0.00E+00	0.00E+00	0.00E+00	4.47E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
BCEW [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
CCE [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
CCR [kg CO2]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND

Allegion plc

Schlage ND Series Locks

ALLEGION LOCKS – ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

| CWNR [kg CO2] | 2.43E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 4.87E-03 | 0.00E+00 | MND |
|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|

Impact Category	A1-A3	A4	A5	B1	B2	B3	B4	B5	В	6	B7	C1	C2	C3	C4	D
			Resource Use Indicators													
									Mechanical	Electrified						
RPRE [MJ]	3.66E+01	3.73E-01	1.09E-02	0.00E+00	0.00E+00	0.00E+00	7.41E+01	0.00E+00	0.00E+00	3.03E+01	0.00E+00	0.00E+00	1.51E-02	0.00E+00	1.66E-02	MND
RPRM [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
RPRT [MJ]	3.66E+01	3.73E-01	1.09E-02	0.00E+00	0.00E+00	0.00E+00	7.41E+01	0.00E+00	0.00E+00	3.03E+01	0.00E+00	0.00E+00	1.51E-02	0.00E+00	1.66E-02	MND
NRPRE [MJ]	8.23E+01	8.84E+00	1.83E-01	0.00E+00	0.00E+00	0.00E+00	1.84E+02	0.00E+00	0.00E+00	1.92E+02	0.00E+00	0.00E+00	3.58E-01	0.00E+00	2.06E-01	MND
NRPRM [MJ]	3.87E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.74E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
NRPRT [MJ]	8.26E+01	8.84E+00	1.83E-01	0.00E+00	0.00E+00	0.00E+00	1.84E+02	0.00E+00	0.00E+00	1.92E+02	0.00E+00	0.00E+00	3.58E-01	0.00E+00	2.06E-01	MND
SM [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
RSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
NRSF [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
RE [MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
FW [m3]	5.31E-01	1.66E-03	1.19E-04	0.00E+00	0.00E+00	0.00E+00	1.07E+00	0.00E+00	0.00E+00	7.01E-02	0.00E+00	0.00E+00	6.71E-05	0.00E+00	2.92E-05	MND
								Output Flo	ws and Waste	e Categories						
HWD [kg]	7.24E-05	1.51E-07	2.09E-09	0.00E+00	0.00E+00	0.00E+00	1.45E-04	0.00E+00	0.00E+00	7.37E-08	0.00E+00	0.00E+00	6.12E-09	0.00E+00	1.37E-09	MND
NHWD [kg]	6.60E-01	6.33E-04	8.64E-02	0.00E+00	0.00E+00	0.00E+00	2.11E+00	0.00E+00	0.00E+00	5.95E-02	0.00E+00	0.00E+00	2.56E-05	0.00E+00	3.08E-01	MND
HLRW [kg]	5.52E-06	2.40E-08	1.56E-09	0.00E+00	0.00E+00	0.00E+00	1.11E-05	0.00E+00	0.00E+00	2.04E-05	0.00E+00	0.00E+00	9.72E-10	0.00E+00	2.03E-09	MND
ILLRW [kg]	4.60E-03	1.99E-05	1.32E-06	0.00E+00	0.00E+00	0.00E+00	9.24E-03	0.00E+00	0.00E+00	1.71E-02	0.00E+00	0.00E+00	8.05E-07	0.00E+00	1.74E-06	MND
CRU [kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
MR [kg]	6.50E-03	0.00E+00	4.11E-01	0.00E+00	0.00E+00	0.00E+00	4.19E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.68E+00	0.00E+00	MND
MER [kg]	9.89E-04	0.00E+00	2.74E-02	0.00E+00	0.00E+00	0.00E+00	5.68E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
EEE [MJ]	5.25E-03	0.00E+00	8.83E-02	0.00E+00	0.00E+00	0.00E+00	1.87E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
EET [MJ]	2.11E-03	0.00E+00	2.82E-02	0.00E+00	0.00E+00	0.00E+00	6.06E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND
EE {MJ}	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.37E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND

The Schlage ND Series Locks environmental impact indicators are within ±10% of each other, and therefore are reported as an average

Allegion plc Schlage ND Series Locks LOCKS – ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

4. LCA Interpretation

Overall, the vast majority of impacts are found in B4, specifically due to the replacement requirements over the service life of a building. This follows the fact that with an RSL of 25 years, there are 2 replacements that need to occur during the 75 years of building operation. If the impacts from B4 are set aside to observe impacts from other phases, the Production Stage (A1-A3) emerges as a major contributor. This includes raw material extraction, raw material transportation, and product manufacturing. For electrified locks, majority of impacts apart from B4 come from B6, where electricity is used during the operation of the lock.

5. Additional Environmental Information

5.1. Environment and Health During Manufacturing

Allegion meets all federal and state standards related to the Environment and Health during manufacturing. Beyond what is regulated, there are no additional environment and health considerations during the production of goods.

5.2. Environment and Health During Installation

The installation instruction that can be found on Allegion's website should be referred to and followed to have proper and safe installation.

5.3. Environment and Health During Use

There are no environmental or health considerations during the use of the product.

5.4. Extraordinary Effects

Fire

The Schlage ND Series Locks comply with ANSI/BHMA A156.2 performance requirements for grade 1 cylindrical locks and are UL listed for use on 3-hour fire doors.

Mechanical Destruction

If the product is mechanically destroyed, it should be disposed of using standard procedures and replaced promptly.

Allegion plc

Schlage ND Series Locks LOCKS – ND10, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

6. Supporting Documentation

The full text of the acronyms found in Section 3 are found in Table 13.

Table 13: Acronym Key

	10010 10:70	cronym Key	
ACRONYM	Техт	ACRONYM	Техт
	LCA Inc	dicators	
ADP- elements	Abiotic depletion potential for non-fossil resources	GWP	Global warming potential
ADP-fossil	Abiotic depletion potential for fossil resources	OPD	Depletion of stratospheric ozone layer
AP	Acidification potential of soil and water	POCP	Photochemical ozone creation potential
EP	Eutrophication potential	Resources	Depletion of non-renewable fossil fuels
	LCI Inc	licators	
PERE	Use of renewable primary energy excluding renewable primary energy resources used as raw materials	PENRT	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)
PERM	Use of renewable primary energy resources used as raw materials	SM	Use of secondary materials
PERT	Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	RSF	Use of renewable secondary fuels
PENRE	Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	NRSF	Use of non-renewable secondary fuels
PENRM	Use of non-renewable primary energy resources used as raw materials	FW	Net use of fresh water
HWD	Disposed-of-hazardous waste	MFR	Materials for recycling
NHWD	Disposed-of non-hazardous waste	MET	Materials for energy recovery
RWD	Disposed-of Radioactive waste	EEE	Exported electrical energy
CRU	Components for reuse	EET	Exported thermal energy
		EE	Exported energy

Allegion plc Schlage ND Series Locks

LOCKS – ND10, ND12, ND12EL, ND12EU, ND30, ND40, ND44, ND45, ND50, ND53, ND60, ND60CLOSED, ND66, ND70, ND70X80, ND72, ND72VANDL, ND73, ND75, ND80, ND80EL, ND80EU, ND82, ND85, ND91, ND92, ND93, ND94, ND95, ND96, ND96EL, ND96EU, ND97, ND170

According to ISO 14025, EN 15804 and ISO 21930:2017

7. References

- 1. Life Cycle Assessment, Allegion, LCA for EPD Generation Tool Report for Allegion Builder's Hardware. WAP Sustainability Consulting. March 2021.
- Product Category Rules for Building-Related Products and Services Part A: Life Cycle Assessment Calculation Rules and Report Requirements UL – 10010 Version 3.2. UL Environment. 2019.
- 3. Product Category Rule Guidance for Building-Related Products and Services Part B: Builders Hardware EPD Requirements UL 10010-13 Version 1.0. UL Environment. 2019.
- 4. ISO 14044: 2006 Environmental Management Life cycle assessment Requirements and Guidelines.
- 5. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- 6. ISO 14044: 2006/ Amd 1:2017 Environmental Management Life cycle assessment Requirements and Guidelines Amendment 1.
- 7. ISO 21930:2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services.
- 8. UL Environment General Program Instructions, March 2020, version 2.5.
- 9. CML-IA Characterization Factors. 5 September 2016. https://www.universiteitleiden.nl/en/research/researchoutput/science/cml-ia-characterization-factors
- 10. Bare, J.C., G.A. Norris, D.W. Pennington, and T. McKone (2003). TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. Journal of Industrial Ecology 6(3), pp. 49-78.
- 11. Bare, J., <u>TRACI 2.0</u>: The Tool for the Reduction and Assessment of Chemical and Other Environmental <u>Impacts 2.0</u>. Clean Technologies and Environmental Policy 2011, 13, (5).
- 12. US Department of Energy, 2003. Energy Use in Selected Metalcasting Facilities. https://www.energy.gov/sites/prod/files/2013/11/f4/energyuseinselectedmetalcasting_5_2 8_04.pdf

