Allegion is pioneering safety by protecting people where they live and work – and protecting our environment at the same time. We promote the health and safety of our employees, customers and local community members worldwide through our commitment to conducting business in a safe and environmentally responsible manner.

Additionally, Allegion recognizes the value of the Leadership in Energy and Environmental Design (LEED) rating system to building environmentally safe and sustainable structures. By using Life Cycle Assessment and Environmental Product Declarations, we aim to provide our customers with the information they need to make decisions regarding their own sustainable building concepts and green solutions.

At Allegion, we value the importance of a cleaner world and are committed to being a responsible member of our global communities.
This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. **Exclusions:** EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. **Accuracy of Results:** EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. **Comparability:** EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment
DECLARATION HOLDER	Allegion
DECLARATION NUMBER	4787103471.115.1
DECLARED PRODUCT	Schlage LT Locks
REFERENCE PCR	Product Category Rule (PCR) for preparing an Environmental Product Declaration (EPD) for Product Group, Builders Hardware UL9004. Version: April 3rd, 2014.
DATE OF ISSUE	April 3, 2017
PERIOD OF VALIDITY	5 Years
CONTENTS OF THE DECLARATION	Product definition and information about building physics
Information about basic material and the material's origin	
Description of the product's manufacture	
Indication of product processing	
Information about the in-use conditions	
Life cycle assessment results	
Testing results and verifications	

The PCR review was conducted by:
PCR Review Panel
 epd@ulenvironment.com

This declaration was independently verified in accordance with ISO 14025 by Underwriters Laboratories
[INTERNAL] [EXTERNAL]
Wade Stout, UL Environment

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:
Thomas P. Gloria, Industrial Ecology Consultants
Product Description

Company

Allegion is a global pioneer in safety and security, with leading brands like aptiQ®, LCN®, Schlage®, Steelcraft® and Von Duprin®. Focusing on security around the door and adjacent areas, Allegion produces a range of solutions for homes, businesses, schools and other institutions. Allegion is a $2 billion company, with products sold in almost 130 countries.

As a subsidiary of Allegion plc, Schlage specializes in the manufacturing and distribution of security lock products for both commercial and residential buildings.

Product

The LT Series gives you the quality you can count on from Schlage. LT Series decorative tubular locks are built from the foundational technology of the L Series mortise locks, to provide you the durable, reliable performance that you have come to know from Schlage. Locks within this series are ANSI A156.2 Grade 2 products. The LCA for this EPD is based on an average product within the LT Series line.

This EPD is representative of the Schlage manufacturing in the US. It also accounts for international supply chains where relevant.

Product Characterization

The product is ordered by the customer through a fax, phone, or online system. The product is shipped directly to customers in packaging material that includes cardboard box, shipping labels and plastic materials. The amount of packaging materials are dependent on the size of the customer’s order. No ancillary materials are necessary for installation or use. Installation instructions and manuals are provided. These manuals, along with instructional videos, can also be downloaded at http://www.schlage.com/en/home/support/how-to-center.html.

Technical Information

Declared unit: One average LT lock.

Additional specifications include:

Door Range: 1 3/8” – 1 3/4” standard, 2” available

Latchbolt: 1 1/8” x 2 ¼” with 2 3/4” backset with square faceplate (default)
Application

Products are designed for commercial applications and fall under the product standard category of ANSI/BHMA A156.2, Series 4000, Grade 2 tubular lock. Optional 20 minute UL Fire Rating.

Delivery Status

For shipping, all locks are packaged in a container and then packaged in cardboard packaging that contains 6 units. They are then palletized (if order is sufficiently large enough) and shipped via UPS, FedEx, or a common carrier. Master Pack dimensions are 11.2” (L) x 11.8” (W) x 11.3” (D).

Base Materials

Base materials for products in the LT series include:

<table>
<thead>
<tr>
<th>Material</th>
<th>% of Final Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>82.85%</td>
</tr>
<tr>
<td>Brass</td>
<td>16.54%</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>0.30%</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.16%</td>
</tr>
<tr>
<td>Paper</td>
<td>0.11%</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>0.04%</td>
</tr>
<tr>
<td>Nylon</td>
<td>0.01%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Manufacture

Schlage locks are produced at Allegion’s Security, Colorado plants.

Manufacturing begins when trim components and other raw materials (such as key blanks and cores) are received from suppliers. Cardboard packaging in which the raw materials arrive in is recycled, while the plastic wrap in which the raw materials arrive in is landfilled. The trim components are then polished, chrome plated, and/or powder coated. The process requires both natural gas
and electricity. Lock chassis and other sub-assemblies are assembled and lock cylinders are broached, bored, and cut as required. Waste metals from the boring and cutting process are recycled. The cutting process also requires a cutting fluid, which is recycled through the process. This fluid was determined to be insignificant and excluded from the LCA. Once completed, the materials are then sent to lock assembly where they are combined into the final product.

Environment and Health During Manufacturing

Allegion and Schlage meet all federal and state standards related to the Environment and Health during manufacturing. Additionally, Schlage employs a strict waste minimization and recycling program that reduces and recycles waste produced in the manufacturing process.

Beyond what is regulated, there are no additional environment and health considerations during the production of goods.

Packaging

For shipping, all locks are packaged in a container and then packaged in cardboard packaging that contains 6 units. They are then palletized (if order is sufficiently large enough) and shipped via UPS, FedEx, or a common carrier.

Product Installation

Full installation instructions can be found online at: http://us.allegion.com/products/mechanical_locks/service_support/installation/pages/default.aspx

In general, installation is achieved through the hand tightening of mounting screws that are included with the purchased lock. The LCA assumed that the door is pre-cut and drilled appropriately to accommodate the lock size.

Environment and Health During Use

There are no environmental or health considerations during the use of the product.

Re-use Stage

Schlage products may be recycled or reused at the end of life. The LCA that this EPD is created from takes the conservative approach by assuming that all products are disposed of within the system boundary. However, potential recycling is calculated in Module D – Benefits Beyond System Boundary.

Disposal

It is assumed that all products are landfilled at the end of their life. The distance waste is transported to the landfill is assumed to be 100 miles.

Further Information

Additional information regarding Allegion’s sustainability program and environmental legal compliance can be found at http://us.allegion.com/communities/architects/solutions/Pages/green.aspx
Life Cycle Assessment

Declared Unit

<table>
<thead>
<tr>
<th>Name</th>
<th>Value (Standard Units)</th>
<th>Value (Metric Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>1 lock</td>
<td>1 lock</td>
</tr>
<tr>
<td>Weight per Declared Unit, excluding</td>
<td>5.63 lbs.</td>
<td>2.55 kg</td>
</tr>
<tr>
<td>Fasteners (pieces x weight/piece)</td>
<td>0 lbs.</td>
<td>0 kg</td>
</tr>
<tr>
<td>Declared Unit</td>
<td>5.63 lbs.</td>
<td>2.55 kg</td>
</tr>
</tbody>
</table>
According to ISO 14025

System Boundary

An LCA for products in which a functional life is not declared can be one of three options. These options include a Cradle to Shipping Gate LCA, a Cradle to Building LCA or a Cradle to Building-with EOL Stage LCA.

This particular LCA is a Cradle to Building-with EOL stage LCA.

A summary of the life cycle stages included in this LCA is presented in the following table.

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Description</th>
<th>Summary of Included Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Product Stage: Raw Material Supply</td>
<td>Raw Material sourcing and processing as defined by secondary data.</td>
</tr>
<tr>
<td>A2</td>
<td>Product Stage: Transport</td>
<td>Shipping from supplier to manufacturing site. Fuel use requirements estimated based on product weights and mapped distance.</td>
</tr>
<tr>
<td>A4</td>
<td>Construction Process Stage: Transport</td>
<td>Shipping from manufacturing site to project site. Fuel use requirements estimated based on product weights and mapped distance.</td>
</tr>
<tr>
<td>A5</td>
<td>Construction Process Stage: Installation</td>
<td>Installation and packaging material waste.</td>
</tr>
<tr>
<td>B1</td>
<td>Use Stage: Use</td>
<td>Module Not Declared</td>
</tr>
<tr>
<td>B2</td>
<td>Use Stage: Maintenance</td>
<td>Module Not Declared</td>
</tr>
<tr>
<td>B3</td>
<td>Use Stage: Repair</td>
<td>Module Not Declared</td>
</tr>
<tr>
<td>B4</td>
<td>Use Stage: Replacement</td>
<td>Module Not Declared</td>
</tr>
<tr>
<td>B5</td>
<td>Use Stage: Refurbishment</td>
<td>Module Not Declared</td>
</tr>
<tr>
<td>B6</td>
<td>Use Stage: Operational Energy Use</td>
<td>Module Not Declared</td>
</tr>
<tr>
<td>B7</td>
<td>Use Stage: Operational Water Use</td>
<td>Module Not Declared</td>
</tr>
<tr>
<td>C1</td>
<td>EOL: Deconstruction</td>
<td>No inputs required for deconstruction.</td>
</tr>
<tr>
<td>C2</td>
<td>EOL: Transport</td>
<td>Shipping from project site to landfill. Fuel use requirements estimated based on product weight and mapped distance.</td>
</tr>
<tr>
<td>C3</td>
<td>EOL: Waste Processing</td>
<td>Waste processing not required. All waste can be processed as is.</td>
</tr>
<tr>
<td>C4</td>
<td>EOL: Disposal</td>
<td>Assumes all products are sent to landfill. Landfill impacts modeled based on secondary data.</td>
</tr>
<tr>
<td>D</td>
<td>Benefits beyond system</td>
<td>Recycling benefits of the metal parts.</td>
</tr>
</tbody>
</table>
Estimates and Assumptions

Finish options – Customers have the choice of purchasing Allegion goods with a variety of finishes. It was determined that a generic finish dataset could be used to represent all finish options. This was determined appropriate based on the relatively low impact of finishing compared to the sourcing of the product’s main materials.

Recycled content – Allegion products may contain recycled content, most notably recycled steel and aluminum, which are two of the most recycled materials throughout the globe. The specific amount of recycled content may vary based on the availability of materials to suppliers at the time of sourcing. Data sets sourced from GaBi include assumptions based on typical aluminum and steel recycled content and have been calculated based on expert evaluation and critical review. It was determined appropriate and a conservative approach to use default recycled content values in the GaBi aluminum and steel datasets.

Landfilling at End of Life – All products were considered to be landfilled at end of life. While recycling is an option, the choice of landfilling represents a conservative estimation of the end of life pathway in lieu of having actual verifiable data of end of life recycling.

The inclusion of overhead energy, water and waste data was determined appropriate due to the method in which Allegion tracks energy use.

Cut-off Criteria

All inputs in which data were available were included.

Material inputs greater than 1% (based on total mass of the individual components of the product) were included within the scope of analysis. Material inputs less than 1% were included if sufficient data was available to warrant inclusion and/or the material input was thought to have significant environmental impact. Cumulative excluded material inputs and environmental impacts are less than 5% based on total weight of the declared unit.

List of excluded materials and energy inputs include:

- There were no excluded material and energy inputs in primary data.
- Some material and energy inputs may have been excluded within the GaBi datasets used for this project. All GaBi datasets have been critically reviewed and conform to the exclusion requirement of the PCR.

No hazardous and toxic releases, which are mandatory to be monitored and reported to the U.S TRI, are released from the facility.

Background Data

All background data was sourced from GaBi databases. GaBi version 6.4.1.20 was used to complete the assessment.
Data Quality

Geographical Coverage
The geographical scope of the manufacturing portion of the life cycle is Security, Colorado and Ensenada, Mexico. Allegion produces Schlage products at both of these locations. This LCA averages the energy, natural resources and material inputs from these two locations. The geographic coverage of primary data is considered excellent.

The geographical scope of the raw material acquisition, customer distribution, site installation and use portions of the life cycle is the global and based on the specific location of each supplier or customer. Locations and shipping distance values were determined through the analysis of purchasing and sales data using GIS mapping software. This data is considered very good.

Disposal and end-of-life geographic coverage (i.e. site of disposal location) are assumed to be 100 miles and based on research relating to the average distance an American lives from a landfill. This data is considered good.

Time Coverage
Primary data were provided by Allegion associates and represent calendar year 2014. Calendar year 2014 was the most recently completed 12-month period year at the beginning of the study. Using 2014 data meets the PCR requirement that manufacturer specific data be within the last 5 years. Time coverage of this data is considered very good.

Data necessary to model cradle-to-gate unit processes was sourced from thinkstep LCI datasets found within GaBi. Time coverage of the GaBi datasets varies from approximately 2002 to present. All datasets rely on at least one 1-year average data. Overall time coverage of the datasets is considered good and meets the requirement of the PCR that all data be updated within a 10-year period. The specific time coverage of secondary datasets can be referenced in the dataset references table in each supplemental LCA report.

Technological Coverage
Primary data provided by Allegion is specific to the technology that the company uses in manufacturing their product. It is site-specific and considered of good quality. It is worth noting that the energy and water used in manufacturing the product includes overhead energy such as lighting, heating and sanitary use of water. Sub-metering was not available to extract process only energy and water use from the total energy use. Sub-metering would improve the technological coverage of data quality.

Data necessary to model cradle-to-gate unit processes was sourced from thinkStep LCI datasets. Technological coverage of the datasets is considered good relative to the actual supply chain of Allegion. While improved life cycle data from suppliers would improve technological coverage, the use of lower quality generic datasets does meet the goal of this LCA.

Allocation Procedures
General principles of allocation were based on ISO14040/44. Where possible, allocation was avoided. When allocation was necessary it was done on a physical mass basis.
LCA Results

The following tables disclose the life cycle results for Schlage’s LT Locks. Impact categories were determined through reference to the BHMA Product Category Rules for Builder Hardware (UL9004).

TRACI 2.1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B1-B7</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming Air, incl. biogenic carbon</td>
<td>[kg CO2-Equiv.]</td>
<td>1.21E+01</td>
<td>3.26E-01</td>
<td>1.17E+00</td>
<td>MND</td>
<td>6.00E-03</td>
<td>0.00E+00</td>
<td>2.05E-01</td>
<td>-5.27E-01</td>
<td></td>
</tr>
<tr>
<td>Ozone Depletion Air</td>
<td>[kg CFC-11-Equiv.]</td>
<td>3.18E-10</td>
<td>2.81E-12</td>
<td>1.53E-12</td>
<td>MND</td>
<td>5.17E-14</td>
<td>0.00E+00</td>
<td>4.14E-13</td>
<td>1.84E-08</td>
<td></td>
</tr>
<tr>
<td>Acidification</td>
<td>[kg SO2-Equiv.]</td>
<td>2.93E-02</td>
<td>1.36E-03</td>
<td>3.96E-03</td>
<td>MND</td>
<td>2.50E-05</td>
<td>0.00E+00</td>
<td>1.33E-03</td>
<td>-1.28E-03</td>
<td></td>
</tr>
<tr>
<td>Eutrophication</td>
<td>[kg N-Equiv.]</td>
<td>3.37E-03</td>
<td>1.32E-04</td>
<td>8.11E-04</td>
<td>MND</td>
<td>2.43E-06</td>
<td>0.00E+00</td>
<td>5.15E-04</td>
<td>-9.30E-06</td>
<td></td>
</tr>
<tr>
<td>Smog Air</td>
<td>[kg O3-Equiv.]</td>
<td>4.68E-01</td>
<td>4.25E-02</td>
<td>1.83E-02</td>
<td>MND</td>
<td>7.81E-04</td>
<td>0.00E+00</td>
<td>3.65E-03</td>
<td>-1.24E-02</td>
<td></td>
</tr>
<tr>
<td>Abiotic Depletion for fossil resources</td>
<td>[MJ surplus energy]</td>
<td>9.49E+00</td>
<td>6.09E-01</td>
<td>1.67E-01</td>
<td>MND</td>
<td>1.12E-02</td>
<td>0.00E+00</td>
<td>3.95E-02</td>
<td>8.36E-02</td>
<td></td>
</tr>
</tbody>
</table>

CML 2001-April 2013

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B1-B7</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming Potential</td>
<td>[kg CO2-Equiv.]</td>
<td>1.22E+01</td>
<td>3.27E-01</td>
<td>1.26E+00</td>
<td>MND</td>
<td>6.01E-03</td>
<td>0.00E+00</td>
<td>2.21E-01</td>
<td>-5.27E-01</td>
<td></td>
</tr>
<tr>
<td>Ozone Layer Depletion Potential</td>
<td>[kg R11-Equiv.]</td>
<td>3.01E-10</td>
<td>2.64E-12</td>
<td>1.44E-12</td>
<td>MND</td>
<td>4.86E-14</td>
<td>0.00E+00</td>
<td>3.89E-13</td>
<td>1.69E-08</td>
<td></td>
</tr>
<tr>
<td>Acidification Potential</td>
<td>[kg SO2-Equiv.]</td>
<td>2.80E-02</td>
<td>1.05E-03</td>
<td>2.44E-03</td>
<td>MND</td>
<td>1.93E-05</td>
<td>0.00E+00</td>
<td>4.81E-04</td>
<td>-1.26E-03</td>
<td></td>
</tr>
<tr>
<td>Eutrophication Potential</td>
<td>[kg Phosphat-Equiv.]</td>
<td>3.95E-03</td>
<td>2.70E-04</td>
<td>1.06E-03</td>
<td>MND</td>
<td>4.96E-06</td>
<td>0.00E+00</td>
<td>5.68E-04</td>
<td>-3.48E-05</td>
<td></td>
</tr>
<tr>
<td>Photochem. Ozone Creation Potential</td>
<td>[kg Ethene-Equiv.]</td>
<td>2.66E-03</td>
<td>1.25E-04</td>
<td>6.64E-04</td>
<td>MND</td>
<td>2.31E-06</td>
<td>0.00E+00</td>
<td>1.39E-04</td>
<td>-2.81E-04</td>
<td></td>
</tr>
<tr>
<td>Abiotic Depletion</td>
<td>[kg Sb-Equiv.]</td>
<td>1.02E-03</td>
<td>4.80E-08</td>
<td>2.85E-08</td>
<td>MND</td>
<td>8.83E-10</td>
<td>0.00E+00</td>
<td>7.79E-09</td>
<td>-5.38E-06</td>
<td></td>
</tr>
<tr>
<td>Abiotic Depletion for fossil resources</td>
<td>[MJ surplus energy]</td>
<td>1.41E+02</td>
<td>4.51E+00</td>
<td>1.28E+00</td>
<td>MND</td>
<td>8.29E-02</td>
<td>0.00E+00</td>
<td>3.07E-01</td>
<td>-5.56E+00</td>
<td></td>
</tr>
</tbody>
</table>
Resource Use

Results of the LCA - Resource Use

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B1-B7</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERE</td>
<td>MJ, net calorific value</td>
<td>2.23E+01</td>
<td>7.50E-02</td>
<td>7.01E-02</td>
<td>MND</td>
<td>0.00E+00</td>
<td>1.38E-03</td>
<td>0.00E+00</td>
<td>2.00E-02</td>
<td>2.87E-01</td>
</tr>
<tr>
<td>PERM</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>PERT</td>
<td>MJ, net calorific value</td>
<td>2.23E+01</td>
<td>7.50E-02</td>
<td>7.01E-02</td>
<td>MND</td>
<td>0.00E+00</td>
<td>1.38E-03</td>
<td>0.00E+00</td>
<td>2.00E-02</td>
<td>2.87E-01</td>
</tr>
<tr>
<td>PENRE</td>
<td>MJ, net calorific value</td>
<td>1.45E+02</td>
<td>4.54E+00</td>
<td>1.31E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>8.34E-02</td>
<td>0.00E+00</td>
<td>3.15E-01</td>
<td>-4.96E+00</td>
</tr>
<tr>
<td>PENRM</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>PENRT</td>
<td>MJ, net calorific value</td>
<td>1.45E+02</td>
<td>4.54E+00</td>
<td>1.31E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>8.34E-02</td>
<td>0.00E+00</td>
<td>3.15E-01</td>
<td>-4.96E+00</td>
</tr>
<tr>
<td>SM</td>
<td>Kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>RSF</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>NRSF</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>FW</td>
<td>M³</td>
<td>6.86E+00</td>
<td>1.47E-02</td>
<td>3.49E-02</td>
<td>MND</td>
<td>0.00E+00</td>
<td>2.70E-04</td>
<td>0.00E+00</td>
<td>1.03E-02</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

Key

- **PERE**: Use of renewable primary energy excluding renewable primary energy resources used as raw materials
- **PERM**: Use of renewable primary energy resources used as raw materials
- **PERT**: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)
- **PENRE**: Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials
- **PENRM**: Use of non renewable primary energy resources used as raw materials
- **PENRT**: Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)
- **SM**: Use of secondary materials
- **RSF**: Use of renewable secondary fuels
- **NRSF**: Use of non renewable secondary fuels
- **FW**: Net use of fresh water
Outputs and Waste

Results of the LCA - Waste and Output Flows

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B1-B7</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWD</td>
<td>Kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>NHWD</td>
<td>Kg</td>
<td>2.74E+01</td>
<td>4.31E-02</td>
<td>1.25E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>7.92E-04</td>
<td>0.00E+00</td>
<td>4.23E-01</td>
<td>-1.41E+00</td>
</tr>
<tr>
<td>RWD</td>
<td>Kg</td>
<td>1.89E-03</td>
<td>9.55E-06</td>
<td>1.11E-05</td>
<td>MND</td>
<td>0.00E+00</td>
<td>1.75E-07</td>
<td>0.00E+00</td>
<td>3.21E-06</td>
<td>1.78E-04</td>
</tr>
<tr>
<td>CRU</td>
<td>Kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>MND</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>MFR</td>
<td>Kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>MND</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>8.70E-01</td>
</tr>
<tr>
<td>MET</td>
<td>Kg</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>MND</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>EEE</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>MND</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>EET</td>
<td>MJ, net calorific value</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>MND</td>
<td>MND</td>
<td>0.00E+00</td>
<td>MND</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

Key

- **HWD**: Disposed-of-hazardous waste
- **NHWD**: Disposed-of non-hazardous waste
- **RWD**: Disposed-of Radioactive waste
- **CRU**: Components for reuse
- **MFR**: Materials for recycling
- **MET**: Materials for energy recovery
- **EEE**: Exported electrical energy
- **EET**: Exported thermal energy

Comparability of EPDs

Results presented in this EPD are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks.

Results are not intended to be used to determine superiority of one product over another.

Environmental declarations from different programs may not be comparable.
Life Cycle Assessment Interpretation

A Dominance Analysis evaluates each life cycle stage and compares the impacts from that stage to the sum of the impacts calculated for all declared modules. A Dominance Analysis was completed for the TRACI and CML results. Module D was excluded from the Dominance Analysis.

The dominance analysis shows that the Production Stage (A1-A3) of the life cycle is responsible for the vast majority of impacts (80-90%, on average) across all impact categories. A1-A3 includes the extraction, processing, and sourcing of all materials.

It is important to note that data quality may have an impact on the results of an LCA. Overall data quality is considered good. Improvements can be made through the modification of datasets to incorporate more regional specificity, both in terms of energy and technology. Additionally, the extrusion of both metals and plastics were treated using a generic dataset linked to region specific energy, water and waste data. Utilizing Allegion-specific upstream data provided by suppliers would lead to improvement in data quality. However the data used in this assessment was considered appropriate in relation to the goal, scope and budget of the project.

References

