

Declaration Owner Allegion Access Technologies LLC

65 Scott Swamp Rd. Farmington, CT 06032 www.stanleyaccess.com | 860.677.2861

Products

Dura-Care 7000 ICU Sliding Doors
Pro-Care 8300 ICU Sliding Doors
Pro-Care 8500 ICU Sliding Doors
Pro-Care 8500 ICU Automatic Sliding Doors

(UNSPSC 30171510 – Automatic doors)

Functional Unit

1 square meter of door opening maintained and operated for 20 years.

Scope

The scope of this EPD is Cradle-to-Gate with scenarios

EPD Number and Period of Validity

SCS-EPD-09229 EPD Valid July 18, 2013 through July 17, 2028

Product Category Rule

Product Category Rule for Preparing an Environmental Product Declaration for Power-Operated Pedestrian and Revolving Doors. UNCPC 4212. ASTM International. PCRExt 2022-114, valid through August 31, 2023

Program Operator

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 +1.510.452.8000 | www.SCSglobalServices.com

Declaration Owner:	Allegion Access Technologies LLC					
Address:	65 Scott Swamp Rd. Farmington, CT 06032					
Products:	Dura-Care 7000 ICU Sliding Doors Pro-Care 8300 ICU Sliding Doors Pro-Care 8500 ICU Sliding Doors Pro-Care 8500 ICU Automatic Sliding Doors					
Declaration Number:	SCS-EPD-09229					
Declaration Validity Period:	July 18 2023 through July 17, 2028					
Program Operator:	SCS Global Services					
Declaration URL Link:	https://www.scsglobalservices.com/certified-green-products-guide					
LCA Practitioner:	Gerard Mansell, Ph.D., SCS Global Services					
LCA Software and LCI database:	OpenLCA v1.11 software and the Ecoinvent v3.9 database					
Independent critical review of the LCA and data, according to ISO 14044 and ISO 14071	□ internal ⊠ external					
LCA Reviewer:	Lindita Bushi, Ph.D., Athena Sustainable Materials Invititute					
Product Category Rule:	Product Category Rule for Preparing an Environmental Product Declaration for Power-Operated Pedestrian and Revolving Doors. UNCPC 4212. ASTM International. PCRExt 2022-114, valid through August 31, 2023					
PCR Review conducted by:						
Independent verification of the declaration and data, according to ISO 14025, ISO 21930 and the PCR	☐ internal					
EPD Verifier:	Lindita Bushi, Ph.D., Athena Sustainable Materials Institute					
	ABOUT STANLEY® Access Technologies2					
	9					
	PRODUCT DESCRIPTION2					
	PRODUCT SPECIFICATION3					
	MATERIAL RESOURCES5					
	PROCESS FLOW DIAGRAM7					
Declaration Contents:	LIFE CYCLE ASSESSMENT OVERVIEW					
Declaration Contents.						
	LIFE CYCLE IMPACT ASSESSMENT9					
	ADDITIONAL ENVIRONMENTAL PARAMETERS13					
	ADDITIONAL ENVIRONMENTAL INFORMATION17					
	SUPPORTING TECHNICAL INFORMATION					
	REFERENCES					

Disclaimers: This Environmental Product Declaration (EPD) conforms to ISO 14025, 14040, 14044, and ISO 21930:2017.

Scope of Results Reported: The PCR requirements limit the scope of the LCA metrics such that the results exclude environmental and social performance benchmarks and thresholds, and exclude impacts from the depletion of natural resources, land use ecological impacts, ocean impacts related to greenhouse gas emissions, risks from hazardous wastes and impacts linked to hazardous chemical emissions.

Accuracy of Results: Due to PCR constraints, this EPD provides estimations of potential impacts that are inherently limited in terms of accuracy.

Comparability: The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

ABOUT STANLEY® Access Technologies

STANLEY® Access Technologies is committed to being an industry leader in door automation through exceptional service, high quality product innovation, and lowest total cost of ownership. For over 80 years, we have been designing, building, installing and servicing manual and automatic sliding, swinging, revolving and folding doors as well as sensors and controls.

Everywhere you go, you can find our trusted products throughout a wide variety of commercial, institutional, industrial and transportation applications.

Headquartered in Farmington, CT, STANLEY® Access Technologies is the largest manufacturer, installer and service provider of automatic doors in North America.

PRODUCT DESCRIPTION

The STANLEY Access Dura-Care 7000, Pro-Care 8300 and Pro-Care 8500 ICU/CCU Sliding Doors are manufactured in ISO 9001 certified facilities in Farmington, Connecticut and Greenfield, Indiana.

The Dura-Care 7000 is an aluminum and glass two panel manual sliding door intended for use in ICU/CCU rooms in a Healthcare facility. The 7000 includes positive latching, a swingout feature for patient movement and includes an option for privacy glass.

The Pro-Care 8300 is an aluminum and glass two panel manual sliding door system intended for use in ICU/CCU rooms in a healthcare facility. The 8300 is designed to meet the requirements for smoke and draft doors by limiting air infiltration and including positive latching. The 8300 has an abundance of user friendly features and functions geared to the healthcare environment including an intuitive swingout feature for moving patients and equipment and includes an option for privacy glass.

The latest ICU door in the ProCare™ Series, the three panel 8500 offers the widest opening to allow for seamless patient and equipment movement without using the included swingout feature. Available in fully automatic, automatic with power assist, or manual configurations. The 8500A easily switches between power assist and automatic mode. With the same size header utilized for both manual and automatic applications, site lines through the facility are maintained for an improved aesthetic.

PRODUCT SPECIFICATION

Table 1. Product specifications for the STANLEY Dura-Care 7000 ICU/CCU Doors.

Value
2, 3, & 4-Panel, 2-Panel S&D, Trackless
Full Breakout, from Fully Open Position
88" (2,235 mm) (Std); taller available.
2-Panel (Std); 84" (2,134 mm) to 108" (2,743 mm)
4" (102 mm) Nominal Height
4 1/2" x 1 3/4" (114 mm x 44 mm)
2-Panel (Std); 33 1/4" to 45 1/4" (845 mm to 1,149 mm)
2-Panel (Std); 75 1/8" to 99 1/8" (1,908 mm to 2,518 mm)
1/4" (6.35 mm) (Std); 1/2" (12.7 mm), 5/8" (15.9 mm), 1" (25.4 mm) Insulated, Electric Privacy Glass
Narrow (Std), and Medium
4" (102 mm) (Std), 6" (152 mm), 8" (203 mm), 10" (254 mm), 12" (305 mm), other custom
Anodized, PVDF Paint, Anti-Microbial (Touch Points or All)
Positive Latch, Single/Multi-Point Locking
UL1784, NFPA 105
2-Panel Only: UL 1784 Leakage (Smoke & Draft)
Smoke Provisions: UL 1784 Leakage (Smoke & Draft); NFPA 105

Table 2. Product specifications for the STANLEY Pro-Care 8300 ICU/CCU Doors.

Parameter	Value	Options
Configurations	2-Panel Trackless Threshold: S&D, Isolation, STC Rated	
Swing Out	2 panels swing out from fully open position	
Typical Height	88" (2,235 mm) (Std); taller available.	
Typical Width	Range 84" (2,134 mm) to 108" (2,743 mm); 96" (2,438 mm) (Typical)	
Header Size	4" (102 mm) Nominal Height	
Jamb Dimension	4 1/2" x 7/8" (114 mm x 22 mm)	
Clear Door Opening Width	38 1/4" (972 mm) to 50 1/4" 1,276 mm); 44 3/16" (1,122 mm) at 96" (2,438 mm) (Typical) Width	
Swing Out Opening Width	78" (1,981 mm) to 102" (1,276 mm); 90" (2,286 mm) at 96" (2,438 mm) (Typical) Width	
Supported Glazing	1/4" (6.35 mm) (Std); 1/2" (12.7 mm), 5/8" (15.9 mm), 1" (25.4 mm) Integral Blinds, STC Rated Glass	
Stiles	Narrow	
Bottom Rails	4" (103 mm) (Std), 6" (152 mm), 8" (203 mm), 10" (254 mm), 12" (305 mm), other custom	
Muntins	0, 1 (Std) or 2	
Finishes	Anodized, PVDF Paint, Anti-Microbial (Touch Points or All)	
Hardware Options	Catch-free Handle available in clear or black (Std)	Positive Latch With Catch-Free Hook Shield, single-point locking, concealed self-closing
Listings	UL1784, NFPA 105	
Ratings	Leakage (Smoke & Draft), Positive/Negative Pressure (Isolation), STC (Sound Transmittance)	
Codes and Standards	Smoke Provisions: NFPA 101, NFPA 105, IBC	

 Table 3. Product specifications for the STANLEY Pro-Care 8500 ICU/CCU Doors.

Parameter	Value			
Configurations	Automatic or Manual 3-Panel Trackless, Smo	ke & Draft (optional), Isolation (optional)		
Utility Breakout	3 Panels swing out from full open position			
Typical Height	87.5" - 100.5"			
Typical Width	84" to 120"			
Header Size	4 1/8" Nominal Height			
Jamb Dimension	Manual: 6"x7/8" standard 6"x 1 ¾" optional.	Auto: 6"x 1 ¾" only		
Clear Door Opening Width Refer to architectural drawing for CDO at other package widths	Manual: 56.8" at 96" package width (7/8" jambs);	Auto: 55.7" at 96" package width (1 ¾" jambs)		
Utility Breakout Nominal Width Refer to architectural drawing for CDO at other package widths	Manual: 87.8" at 96" package width (7/8" jambs);	Auto: 86" at 96" package width (1 ¾" jambs)		
Supported Glazing	1/4" (Std); 1/2", 5/8", 1" Insulated, Electronic Priv	acy Glass (EPG), Privacy Blinds		
Stiles	Narrow			
Bottom Rails	4" (Std), 6", 8", 10", 12", other custom			
Muntins	0, 1 (Std) or 2 2" (Std) and 4 1/4"			
Finishes	Anodized, PVDF Paint, Anti-Microbial (Touch	n Points or All)		
Hardware Options	Positive Latch, Single-Point Locking Manual: Concealed Self Closing, Electronic Ho	old Open		
Ratings/Listings	Leakage (Smoke & Draft), Positive/Negative Pi 14644-1, Class 3), STC (Sound Transmittance)			
Codes And Standards	NFPA 101, NFPA 105, IBC, FGI			
Activation/Safety	Not required for Manual 8500	Full Energy ANSI/BHMA A156.10 (Std), Low Energy ANSI/BHMA A156.38 (Full Energy / Low Energy); Jamb Mounted Touchless Activation + Combined Activation/Safety Sensors		

MATERIAL RESOURCES

The material composition and availability of raw material resources for the sliding doors are summarized in Table 4 through Table 6. Packaging information for the Dura-Care 7000 and Pro-Care 8300 is presented in Table 7 while Table 8 presents packaging data for the Pro-Care 8500 Series products.

 Table 4. Material composition of the STANLEY Access Dura-Care 7000 Series ICU/CCU Sliding Doors.

Component			Ava	ilability		Dura-Care 7000 Series		
Component	Material	Renewable	Non- Renewable	Recycled (% pre- /post-consumer)	Origin of Materials	kg/m²	%	
Recycled Aluminum	Aluminum		Mineral, Abundant	30%/40%	North America	6.05	42%	
Aluminum	Aluminum		Mineral, Abundant	0%	Global	6.21	43%	
Steel	Steel		Mineral, Abundant	0%	Global	1.80	13%	
Plastic	Plastic		Fossil, Limited	0%	Global	0.259	1.8%	
		To	tal			14	100%	

 Table 5. Material composition of the STANLEY Access Pro-Care 8300 Series ICU/CCU Sliding Doors

			Ava	ailability		Pro-Care 8	300 Series			
Component	Material	Renewable	Non- Renewable	Recycled (% pre- /post-consumer)	Origin of Materials	kg/m²	%			
Recycled Aluminum	Aluminum		Mineral, Abundant	30%/40%	North America	4.58	43%			
Aluminum	Aluminum		Mineral, Abundant	0%	Global	4.73	44%			
Steel	Steel		Mineral, Abundant	0%	Global	1.19	11%			
Plastic	Plastic		Fossil, Limited	0%	Global	0.154	1.4%			
Other	Electronics		Mineral, Abundant	0%	Global	7.16x10 ⁻³	0.1%			
	Total									

 Table 6. Material composition of the STANLEY Access Pro-Care 8500 Series ICU/CCU Sliding Doors

Commonant	Material		Availa	bility		Pro-Care Serie		Pro-Care 8500 Series (Automatic)	
Component	material	Renewable	Non- Renewable	Recycled (% pre-/post- consumer)	Origin of Materials	kg/m²	%	kg/m²	%
Recycled Aluminum	Aluminum		Mineral, Abundant	30%/40%	North America	8.42	48%	8.47	46%
Aluminum	Aluminum		Mineral, Abundant	0%	Global	5.79	33%	5.99	32%
Steel	Steel		Mineral, Abundant	0%	Global	2.70	16%	2.76	15%
Plastic	Plastic		Fossil, Limited	0%	Global	0.458	2.6%	0.458	2.5%
Other	Electronics		Mineral, Abundant	0%	Global	1.90x10 ⁻²	0.1%	0.852	4.6%
		То	tal			17	100%	19	100%

Table 7. Material composition of packaging for the STANLEY Access Pro-Care 8300 Series ICU/CCU Sliding Doors.

Commonant	Material		Avail	ability		7000/8300 Series Doors			
Component	iviatei iai	Renewable	Non-Renewable	Recycled (% pre- /post-consumer)	Origin of Materials	kg/m²	%		
Cardboard	Corrugated	Abundant		0%	Global	0.389	13%		
Plastic Wrap	Plastic		Fossil, Limited	0%	Global	2.28	79%		
Paper	Paper	Abundant		0%	Global	0.231	8.0%		
	Total								

Table 8. Material composition of packaging for the STANLEY Access Pro-Care 8500 Series ICU/CCU Sliding Doors.

			8500 Series Doors						
Component	Material	Renewable	Non-Renewable	Recycled (% pre- /post-consumer)	Origin of Materials	kg/m²	%		
Cardboard	Corrugated	Abundant		0%	Global	0.210	13%		
Plastic Wrap	Plastic		Fossil, Limited	0%	Global	1.23	79%		
Paper	Paper	Abundant		0%	Global	0.125	8%		
	Total								

In conformance with the PCR, product materials were reviewed for the presence of any toxic or hazardous chemicals with respect to US regulations¹. Based on a review of the product components provided by the manufacturer, no regulated chemicals were identified in the product or product components.

¹ Resource Conservation and Recovery Act (RCRA), Subtitle 3. https://www.epa.gov/rcra/resource-conservation-and-recovery-actrcra-overview

PROCESS FLOW DIAGRAM

The diagrams below present a representation of the most significant contributions to the life cycle of the STANLEY Access *Dura-Care 7000, Pro-Care 8300 and Pro-Care 8500 Sliding Doors*. The following life cycle stages are included: production (Modules A1-A3); construction & installation (Module A4-A5); product use (Modules B1-B7); and end-of-life (Modules C1-C4).

LIFE CYCLE ASSESSMENT OVERVIEW

The system boundary is cradle-to-gate with scenarios and includes resource extraction and processing, product manufacture and assembly, distribution/transport, use and maintenance, and end-of-life. The diagram below illustrates the life cycle stages included in this EPD.

P	roduct			truction ocess		Use End-of-life					Benefits and loads beyond the system boundary					
A1	A2	А3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Raw material extraction and processing	Transport to manufacturer	Manufacturing	Transport	Construction - installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, recovery and/or recycling potential
х	х	Х	х	х	Х	MND	MND	MND	MND	х	х	х	Х	х	x	MND

X = Included | MND = Module Not Declared

The following provides a brief overview of the Modules included in the product system for the STANLEY Access *Dura-Care* 7000, *Pro Care* 8300 and *Pro Care* 8500 *Sliding Doors*.

Module A1: Raw material extraction and processing

This module includes the potential environmental impacts associated with the extraction and processing of raw materials for various component parts in the door products. The primary components are fabricated of aluminum and steel. The impacts from fabrication processes were based on representative datasets for metal product manufacturing.

Module A2: Transportation

This module includes transportation of processed raw materials and product components to the STANLEY manufacturing facilities in Connecticut and Indiana.

Module A3: Manufacture of the Door Products

Module A4: Transportation & Delivery to the Installation Site

This module includes the impacts associated with delivery of door product to the installation site. Transport by diesel truck an estimated distance of 3,250 km is assumed.

Module A5: Construction & Installation

This module includes installation of the products. This module includes delivery of the door products to the point of installation (downstream transportation), and installation of the products, including glazing. Impacts associated with the extraction, processing and transport of the glass are included in the installation phase. This stage also includes the disposal (including transport) of the product packaging materials. The doors are fabricated for specific door openings and applications with no installation waste.

Module B1: Normal use of the product

This module accounts for environmental impacts arising through normal anticipated use of the product. No impacts are associated with the use of the products and the results for this phase are reported as zero.

Module B2: Maintenance

Module not declared.

Module B3: Repair

Module not declared.

Module B4: Replacement

Module not declared.

Module B5: Refurbishment

Module not declared.

Module B6: Operational Energy Use

This module includes the primary energy consumption (electricity) associated with the operational use of these products. For manual doors, there are no operational energy requirements and the impact contributions from this phase are zero. For the Pro-Care 8500 automatic sliding doors, the impact contributions from electricity are based on data provided by the manufacturer.

Module B7: Operational Water Use

No water use occurs during the operation of the product and impacts are zero.

Module C1-C4: End-of-Life

The end-of-life stage of the product starts when it is replaced, dismantled or deconstructed from the building. There are no impacts associated with the deconstruction and dismantling processes as these are manual processes completed with hand tools and does not require any energy input for removal of the product. The impacts associated with transportation of waste materials to processing facilities, waste processing of material components and waste disposal of the product are included in these modules.

LIFE CYCLE IMPACT ASSESSMENT

Impact category indicators are calculated using the TRACI 2.1 and CML-IA characterization methods. TRACI 2.1 impact category indicators include global warming potential (100 years), acidification potential, smog potential, ozone depletion potential, and eutrophication potential. CML-IA impact category indicators include global warming potential (100 years), acidification potential, eutrophication potential, Photochemical Ozone Creation potential, ozone depletion potential, and abiotic resource depletion, in accordance with the PCR. The LCIA results are calculated using OpenLCA software. The results for these indicators are shown in Table 9 through Table 12.

Table 9. Life Cycle Impact Assessment results for the STANLEY Access Dura-Care 7000 Series Sliding Doors per functional unit. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Category	Unit	Raw Materials	Transport	Manufacturing	Construction	Use	Disposal
TRACI							
Clabalouannia	kg CO ₂ eq	160	4.19	14.0	23.8	0.00	0.798
Global warming	%	79%	2.1%	6.9%	12%	0.00%	0.39%
A =: =!:C ===: ==	kg N eq	1.03	4.59x10 ⁻²	4.18x10 ⁻²	0.138	0.00	3.51x10 ⁻³
Acidification	%	82%	3.6%	3.3%	11%	0.00%	0.28%
5 · 1: ::	kg N eq	0.518	4.36x10 ⁻³	3.74x10 ⁻²	4.82×10 ⁻²	0.00	2.03x10 ⁻³
Eutrophication	%	85%	0.71%	6.1%	7.9%	0.00%	0.33%
C	kg O₃ eq	9.98	0.931	0.607	2.26	0.00	0.102
Smog formation	%	72%	6.7%	4.4%	16%	0.00%	0.74%
O dl-ti	kg CFC-11 eq	3.05x10 ⁻⁶	7.22x10 ⁻⁸	2.01x10 ⁻⁷	3.42x10 ⁻⁷	0.00	1.32x10 ⁻⁸
Ozone depletion	%	83%	2.0%	5.5%	9.3%	0.00%	0.36%
- "6" 1" 1"	MJ surplus	120	8.17	38.0	38.0	0.00	1.38
Fossil fuel depletion	%	58%	4.0%	18%	18%	0.00%	0.67%
CML							
Clabalooanaiaa	kg CO ₂ eq	161	4.22	14.3	24.1	0.00	0.807
Global warming	%	79%	2.1%	7.0%	12%	0.00%	0.39%
A =: =!:C ===: ==	kg SO ₂ eq	1.05	4.20x10 ⁻²	3.99x10 ⁻²	0.131	0.00	2.76x10 ⁻³
Acidification	%	83%	3.3%	3.1%	10%	0.00%	0.22%
E. dans dissertion	kg (PO ₄) ³⁻ eq	0.261	6.03x10 ⁻³	1.79x10 ⁻²	2.94x10 ⁻²	0.00	1.22x10 ⁻³
Eutrophication	%	83%	1.9%	5.7%	9.3%	0.00%	0.39%
Distantantantantan	kg C ₂ H ₄ eq	7.16x10 ⁻²	1.34x10 ⁻³	4.49x10 ⁻³	5.12x10 ⁻³	0.00	1.31x10 ⁻⁴
Photochemical oxidation	%	87%	1.6%	5.4%	6.2%	0.00%	0.16%
0	kg CFC-11 eq	2.40x10 ⁻⁶	5.48x10 ⁻⁸	1.46x10 ⁻⁷	2.58x10 ⁻⁷	0.00	1.02x10 ⁻⁸
Ozone layer depletion	%	84%	1.9%	5.1%	9.0%	0.00%	0.36%
Abjetic depletion fossil fuels	MJ	1,540	56.8	272	270	0.00	9.24
Abiotic depletion, fossil fuels	%	72%	2.6%	13%	13%	0.00%	0.43%

Table 10. Life Cycle Impact Assessment results for the STANLEY Access Pro-Care 8300 Series Sliding Doors per functional unit. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Category	Unit	Raw Materials	Transport	Manufacturing	Construction	Use	Disposal
TRACI							
Global warming	kg CO ₂ eq	122	3.20	13.8	22.3	0.00	0.565
Global Warthing	%	75%	2.0%	8.5%	14%	0.00%	0.35%
Acidification	kg N eq	0.786	3.57x10 ⁻²	4.17x10 ⁻²	0.135	0.00	2.59x10 ⁻³
Acidification	%	78%	3.6%	4.2%	14%	0.00%	0.26%
Eutrophication	kg N eq	0.396	3.34x10 ⁻³	3.49x10 ⁻²	4.70×10 ⁻²	0.00	1.02x10 ⁻³
Eutropriication	%	82%	0.69%	7.2%	9.7%	0.00%	0.21%
Cmag formation	kg O₃ eq	7.59	0.721	0.603	2.11	0.00	7.58x10 ⁻²
Smog formation	%	68%	6.5%	5.4%	19%	0.00%	0.68%
Ozone depletion	kg CFC-11 eq	2.27x10 ⁻⁶	5.52x10 ⁻⁸	2.01x10 ⁻⁷	3.12x10 ⁻⁷	0.00	9.44x10 ⁻⁹
Ozorie depietion	%	80%	1.9%	7.0%	11%	0.00%	0.33%
Fossil fuel deplation	MJ surplus	91.7	6.24	38.0	34.5	0.00	1.02
Fossil fuel depletion	%	53%	3.6%	22%	20%	0.00%	0.60%
CML							
Global warming	kg CO ₂ eq	122	3.23	14.1	22.5	0.00	0.572
Giobai wariiiilg	%	75%	2.0%	8.6%	14%	0.00%	0.35%
Acidification	kg SO ₂ eq	0.803	3.27x10 ⁻²	3.98x10 ⁻²	0.129	0.00	2.04x10 ⁻³
ACIUIIICALIOIT	%	80%	3.2%	4.0%	13%	0.00%	0.20%
Eutrophication	kg (PO ₄) ³⁻ eq	0.199	4.66x10 ⁻³	1.69x10 ⁻²	2.83x10 ⁻²	0.00	7.27x10 ⁻⁴
Eutrophication	%	80%	1.9%	6.8%	11%	0.00%	0.29%
Photochemical oxidation	kg C ₂ H ₄ eq	5.43x10 ⁻²	1.04x10 ⁻³	4.43x10 ⁻³	4.96x10 ⁻³	0.00	9.71x10 ⁻⁵
PHOLOCHEITIICAI OXIDALION	%	84%	1.6%	6.8%	7.7%	0.00%	0.15%
Ozone layer depletion	kg CFC-11 eq	1.78x10 ⁻⁶	4.19x10 ⁻⁸	1.46×10 ⁻⁷	2.35x10 ⁻⁷	0.00	7.27x10 ⁻⁹
Ozone layer depletion	%	81%	1.9%	6.6%	11%	0.00%	0.33%
Abjectic depletion fossil finals	MJ	1,170	43.3	271	245	0.00	6.83
Abiotic depletion, fossil fuels	%	67%	2.5%	16%	14%	0.00%	0.39%

 Table 11. Life Cycle Impact Assessment results for the STANLEY Access Pro-Care 8500 Series Sliding Doors per functional unit.
 Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Category	Unit	Raw Materials	Transport	Manufacturing	Construction	Use	Disposal
TRACI							
Global warming	kg CO ₂ eq	179	5.39	19.4	24.7	0.00	1.07
Global Warthing	%	78%	2.4%	8.5%	11%	0.00%	0.47%
Acidification	kg N eq	1.13	3.68x10 ⁻²	4.65x10 ⁻²	0.146	0.00	4.28x10 ⁻³
Acidification	%	83%	2.7%	3.4%	11%	0.00%	0.31%
Eutrophication	kg N eq	0.596	5.30x10 ⁻³	3.62x10 ⁻²	3.90x10 ⁻²	0.00	5.13x10 ⁻³
Eutropriication	%	87%	0.78%	5.3%	5.7%	0.00%	0.75%
Smag formation	kg O₃ eq	11.1	0.809	0.655	2.41	0.00	0.126
Smog formation	%	73%	5.4%	4.3%	16%	0.00%	0.83%
Ozone depletion	kg CFC-11 eq	3.47x10 ⁻⁶	9.40x10 ⁻⁸	3.67x10 ⁻⁷	3.66x10 ⁻⁷	0.00	1.52x10 ⁻⁸
Ozorie depietion	%	80%	2.2%	8.5%	8.5%	0.00%	0.35%
Fassil fuel deplation	MJ surplus	135	10.7	44.4	40.7	0.00	1.68
Fossil fuel depletion	%	58%	4.6%	19%	17%	0.00%	0.72%
CML							
Global warming	kg CO ₂ eq	180	5.43	19.8	24.9	0.00	1.10
Giobai wariiiilg	%	78%	2.3%	8.5%	11%	0.00%	0.47%
Acidification	kg SO ₂ eq	1.15	3.27x10 ⁻²	4.50x10 ⁻²	0.138	0.00	3.38x10 ⁻³
ACIUIIICALIOIT	%	84%	2.4%	3.3%	10%	0.00%	0.25%
Eutrophication	kg (PO ₄) ³⁻ eq	0.299	5.85x10 ⁻³	1.77×10 ⁻²	2.69x10 ⁻²	0.00	2.56x10 ⁻³
Eutrophication	%	85%	1.7%	5.0%	7.6%	0.00%	0.73%
Photochemical oxidation	kg C ₂ H ₄ eq	7.85x10 ⁻²	1.22x10 ⁻³	3.81x10 ⁻³	5.39x10 ⁻³	0.00	1.73x10 ⁻⁴
PHOLOCHEITIICAI OXIDALION	%	88%	1.4%	4.3%	6.0%	0.00%	0.19%
Ozone layer depletion	kg CFC-11 eq	2.74x10 ⁻⁶	7.14x10 ⁻⁸	2.71×10 ⁻⁷	2.76×10 ⁻⁷	0.00	1.16x10 ⁻⁸
Ozone layer depletion	%	81%	2.1%	8.0%	8.2%	0.00%	0.34%
Abjectic depletion fossil finals	MJ	1,730	74.9	308	289	0.00	11.2
Abiotic depletion, fossil fuels	%	72%	3.1%	13%	12%	0.00%	0.47%

Table 12. Life Cycle Impact Assessment results for the STANLEY Access Pro-Care 8500 Series Automatic Sliding Doors per functional unit. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Impact Category	Unit	Raw Materials	Transport	Manufacturing	Construction	Use	Disposal
TRACI							
Global warming	kg CO ₂ eq	220	5.52	23.2	25.4	207	1.55
Giobai warriirig	%	46%	1.1%	4.8%	5.3%	43%	0.32%
Acidification	kg N eq	1.38	3.85x10 ⁻²	5.44x10 ⁻²	0.149	1.16	4.70x10 ⁻³
ACIUIICALIOIT	%	50%	1.4%	2.0%	5.4%	42%	0.17%
Eutrophication	kg N eq	1.02	5.45x10 ⁻³	3.97x10 ⁻²	3.96x10 ⁻²	0.585	9.80x10 ⁻³
Eutrophication	%	60%	0.32%	2.3%	2.3%	34%	0.58%
Smog formation	kg O₃ eq	14.3	0.842	0.762	2.48	11.1	0.137
Sinog formation	%	48%	2.8%	2.6%	8.4%	37%	0.46%
Ozono doplation	kg CFC-11 eq	6.20x10 ⁻⁶	9.64x10 ⁻⁸	4.54x10 ⁻⁷	3.79x10 ⁻⁷	4.82x10 ⁻⁶	1.65x10 ⁻⁸
Ozone depletion	%	52%	0.81%	3.8%	3.2%	40%	0.14%
Familified dealering	MJ surplus	172	11.0	52.4	42.1	320	1.82
Fossil fuel depletion	%	29%	1.8%	8.7%	7.0%	53%	0.30%
CML							
Clabal warming	kg CO2 eq	222	5.57	23.6	25.6	209	1.65
Global warming	%	45%	1.1%	4.8%	5.3%	43%	0.34%
Asidification	kg SO2 eq	1.39	3.42x10 ⁻²	5.28x10 ⁻²	0.140	1.20	3.71x10 ⁻³
Acidification	%	49%	1.2%	1.9%	5.0%	42%	0.13%
Eutrophication	kg (PO ₄) ³⁻ eq	0.494	6.06x10 ⁻³	1.97x10 ⁻²	2.75x10 ⁻²	0.300	4.36x10 ⁻³
Eutrophication	%	58%	0.71%	2.3%	3.2%	35%	0.51%
Dhata da saisal suidatis s	kg C ₂ H ₄ eq	8.93x10 ⁻²	1.26x10 ⁻³	4.24x10 ⁻³	5.50x10 ⁻³	4.97x10 ⁻²	2.74x10 ⁻⁴
Photochemical oxidation	%	59%	0.84%	2.8%	3.7%	33%	0.18%
Ozona lavar doplation	kg CFC-11 eq	5.26x10 ⁻⁶	7.31x10 ⁻⁸	3.36x10 ⁻⁷	2.85x10 ⁻⁷	3.32x10 ⁻⁶	1.26x10 ⁻⁸
Ozone layer depletion	%	57%	0.79%	3.6%	3.1%	36%	0.14%
Abjectic depletion fossil finals	MJ	2,180	76.7	362	299	2,730	12.2
Abiotic depletion, fossil fuels	%	39%	1.4%	6.4%	5.3%	48%	0.22%

ADDITIONAL ENVIRONMENTAL PARAMETERS

ISO 21930 requires that several parameters be reported in the EPD, including resource use, waste categories and output flows, and other environmental information. The results for these parameters are shown in Table 13 through Table 16. As the products do not contain significant amounts of bio-based materials, biogenic carbon emissions and removals are not declared.

Table 13. Resource use and waste flows for the STANLEY Access Dura-Care 7000 Series Sliding Doors per functional unit. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

						,	
Parameter	Unit	Raw Materials	Transport	Manufacturing	Construction	Use	Disposal
Energy Resource Use							
Use of renewable primary energy excluding	MJ	479	0.636	32.0	7.63	0.00	5.43x10 ⁻²
resources used as raw materials	%	92%	0.12%	6.2%	1.5%	0.00%	0.01%
Use of renewable primary	MJ	0.00	0.00	0.00	0.00	0.00	0.00
energy resources used as raw materials	%	0%	0%	0%	0%	0%	0%
Use of non-renewable primary energy excluding resources used as raw materials	MJ	INA	INA	INA	INA	INA	INA
Use of non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA	INA	INA
Use of secondary	kg	4.24	0.00	0.00	0.00	0.00	0.00
materials	%	100%	0.00%	0.00%	0.00%	0.00%	0.00%
Use of secondary fuels	MJ	N/A	N/A	N/A	N/A	N/A	N/A
Recovered energy	MJ	N/A	N/A	N/A	N/A	N/A	N/A
Use of net fresh water	m ³	5.97	3.79x10 ⁻²	0.770	0.359	0.00	7.07x10 ⁻³
USE OF HEL FRESH Water	%	84%	0.53%	11%	5.0%	0.00%	0.10%
Wastes							
Hazardous waste	kg	8.71×10 ⁻³	3.46x10 ⁻⁴	5.11x10 ⁻⁴	1.53x10 ⁻³	0.00	6.14x10 ⁻⁵
disposed	%	78%	3.1%	4.6%	14%	0.00%	0.55%
Non-hazardous waste	kg	38.4	2.02	2.29	9.98	0.00	4.47
disposed	%	67%	3.5%	4.0%	17%	0.00%	7.8%
High-level radioactive	kg	3.81x10 ⁻⁴	2.97x10 ⁻⁶	8.56x10 ⁻⁵	2.27x10 ⁻⁵	0.00	2.66x10 ⁻⁷
wastes disposed	%	77%	0.60%	17%	4.6%	0.00%	0.05%
Low-level radioactive	kg	9.60x10 ⁻⁴	7.08x10 ⁻⁶	3.55x10 ⁻⁴	5.28x10 ⁻⁵	0.00	6.44x10 ⁻⁷
wastes disposed	%	70%	0.52%	26%	3.8%	0.00%	0.05%
Components for Re-use	kg	0.00	0.00	0.00	0.00	0.00	0.00
Materials for Degysling	kg	0.00	0.00	0.00	0.807	0.00	8.82
Materials for Recycling	%	0.00%	0.00%	0.00%	8.4%	0.00%	92%
Materials for energy recovery	kg	N/A	N/A	N/A	N/A	N/A	N/A
Exported energy	MJ	N/A	N/A	N/A	N/A	N/A	N/A

INA = Indicator not assessed. No classification scheme is available in OpenLCA to estimate these indicators.

Table 14. Resource use and waste flows for the STANLEY Access Pro-Care 8300 Series Sliding Doors per functional unit. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Parameter	Unit	Raw Materials	Transport	Manufacturing	Construction	Use	Disposal
Energy Resource Use							
Use of renewable primary energy excluding	MJ	364	0.484	32.0	7.57	0.00	3.77x10 ⁻²
resources used as raw materials	%	90%	0.12%	7.9%	1.9%	0.00%	0.01%
Use of renewable primary	MJ	0.00	0.00	0.00	0.00	0.00	0.00
energy resources used as raw materials	%	0%	0%	0%	0%	0%	0%
Use of non-renewable primary energy excluding resources used as raw materials	MJ	INA	INA	INA	INA	INA	INA
Use of non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA	INA	INA
Use of secondary	kg	3.20	0.00	0.00	0.00	0.00	0.00
materials	%	100%	0.00%	0.00%	0.00%	0.00%	0.00%
Use of secondary fuels	MJ	N/A	N/A	N/A	N/A	N/A	N/A
Recovered energy	MJ	N/A	N/A	N/A	N/A	N/A	N/A
Use of net fresh water	m ³	4.54	2.88x10 ⁻²	0.769	0.349	0.00	4.41x10 ⁻³
Ose of flet flesh water	%	80%	0.51%	14%	6.1%	0.00%	0.08%
Wastes							
Hazardous waste	kg	6.61x10 ⁻³	2.64x10 ⁻⁴	5.09x10 ⁻⁴	1.35x10 ⁻³	0.00	4.55x10 ⁻⁵
disposed	%	75%	3.0%	5.8%	15%	0.00%	0.52%
Non-hazardous waste	kg	29.0	1.52	1.92	8.48	0.00	3.24
disposed	%	66%	3.5%	4.3%	19%	0.00%	7.3%
High-level radioactive	kg	2.89x10 ⁻⁴	2.26x10 ⁻⁶	8.56x10 ⁻⁵	2.17x10 ⁻⁵	0.00	1.89x10 ⁻⁷
wastes disposed	%	73%	0.57%	21%	5.4%	0.00%	0.05%
Low-level radioactive	kg	8.29x10 ⁻⁴	5.39x10 ⁻⁶	3.55x10 ⁻⁴	5.02x10 ⁻⁵	0.00	4.55x10 ⁻⁷
wastes disposed	%	67%	0.43%	29%	4.0%	0.00%	0.04%
Components for Re-use	kg	0.00	0.00	0.00	0.00	0.00	0.00
Materials for Recycling	kg	0.00	0.00	0.00	0.807	0.00	6.67
accitato for necycling	%	0.00%	0.00%	0.00%	11%	0.00%	89%
Materials for energy recovery	kg	N/A	N/A	N/A	N/A	N/A	N/A
Exported energy	MJ	N/A	N/A	N/A	N/A	N/A	N/A

INA = Indicator not assessed. No classification scheme is available in OpenLCA to estimate these indicators.

Table 15. Resource use and waste flows for the STANLEY Access Pro-Care 8500 Series Sliding Doors per functional unit. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

					9 7	,	
Parameter	Unit	Raw Materials	Transport	Manufacturing	Construction	Use	Disposal
Energy Resource Use							
Use of renewable primary	MJ	510	0.916	25.6	8.07	0.00	6.18x10 ⁻²
energy excluding resources used as raw materials	%	94%	0.17%	4.7%	1.5%	0.00%	0.01%
Use of renewable primary	MJ	0.00	0.00	0.00	0.00	0.00	0.00
energy resources used as raw materials	%	0%	0%	0%	0%	0%	0%
Use of non-renewable primary energy excluding resources used as raw materials	MJ	INA	INA	INA	INA	INA	INA
Use of non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA	INA	INA
Use of secondary	kg	5.89	0.00	0.00	0.00	0.00	0.00
materials	%	100%	0.00%	0.00%	0.00%	0.00%	0.00%
Use of secondary fuels	MJ	N/A	N/A	N/A	N/A	N/A	N/A
Recovered energy	MJ	N/A	N/A	N/A	N/A	N/A	N/A
Use of net fresh water	m ³	6.79	5.48x10 ⁻²	0.904	0.380	0.00	6.38x10 ⁻³
OSE OF FIEL FRESH Water	%	83%	0.67%	11%	4.7%	0.00%	0.08%
Wastes							
Hazardous waste	kg	1.02x10 ⁻²	4.77x10 ⁻⁴	9.56x10 ⁻⁴	1.64x10 ⁻³	0.00	7.48x10 ⁻⁵
disposed	%	76%	3.6%	7.2%	12%	0.00%	0.56%
Non-hazardous waste	kg	42.2	3.28	2.59	9.98	0.00	5.67
disposed	%	66%	5.1%	4.1%	16%	0.00%	8.9%
High-level radioactive	kg	4.32×10 ⁻⁴	4.29x10 ⁻⁶	1.48x10 ⁻⁴	2.42x10 ⁻⁵	0.00	3.15x10 ⁻⁷
wastes disposed	%	71%	0.70%	24%	4.0%	0.00%	0.05%
Low-level radioactive	kg	1.55x10 ⁻³	1.02x10 ⁻⁵	7.10x10 ⁻⁴	5.63x10 ⁻⁵	0.00	7.58x10 ⁻⁷
wastes disposed	%	67%	0.44%	30%	2.4%	0.00%	0.03%
Components for Re-use	kg	0.00	0.00	0.00	0.00	0.00	0.00
Materials for Recycling	kg	0.00	0.00	0.00	0.436	0.00	10.4
waterials for receycling	%	0.00%	0.00%	0.00%	4.0%	0.00%	96%
Materials for energy recovery	kg	N/A	N/A	N/A	N/A	N/A	N/A
Exported energy	MJ	N/A	N/A	N/A	N/A	N/A	N/A

INA = Indicator not assessed. No classification scheme is available in OpenLCA to estimate these indicators.

Table 16. Resource use and waste flows for the STANLEY Access Pro-Care 8500 Series Automatic Sliding Doors per functional unit. Results reported in MJ are calculated using lower heating values. All values are rounded to three significant digits.

Parameter	Unit	Raw Materials	Transport	Manufacturing	Construction	Use	Disposal
Energy Resource Use							
Use of renewable primary	MJ	575	0.936	28.3	8.20	385	7.71x10 ⁻²
energy excluding resources used as raw materials	%	58%	0.09%	2.8%	0.82%	39%	0.01%
Use of renewable primary	MJ	0.00	0.00	0.00	0.00	0.00	0.00
energy resources used as raw materials	%	0%	0%	0%	0%	0%	0%
Use of non-renewable primary energy excluding resources used as raw materials	MJ	INA	INA	INA	INA	INA	INA
Use of non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA	INA	INA
Use of secondary	kg	5.93	0.00	0.00	0.00	0.00	0.00
materials	%	100%	0.00%	0.00%	0.00%	0.00%	0.00%
Use of secondary fuels	MJ	N/A	N/A	N/A	N/A	N/A	N/A
Recovered energy	MJ	N/A	N/A	N/A	N/A	N/A	N/A
	m ³	9.77	5.60x10 ⁻²	1.07	0.388	20.3	7.54x10 ⁻³
Use of net fresh water	%	31%	0.18%	3.4%	1.2%	64%	0.02%
Wastes							
Hazardous waste	kg	1.26x10 ⁻²	4.88x10 ⁻⁴	1.18x10 ⁻³	1.71x10 ⁻³	9.46x10 ⁻³	8.11x10 ⁻⁵
disposed	%	49%	1.9%	4.6%	6.7%	37%	0.32%
Non-hazardous waste	kg	46.1	3.34	2.76	10.5	27.0	6.45
disposed	%	48%	3.5%	2.9%	11%	28%	6.7%
High-level radioactive	kg	7.54x10 ⁻⁴	4.38x10 ⁻⁶	1.82x10 ⁻⁴	2.48x10 ⁻⁵	3.26x10 ⁻³	3.94x10 ⁻⁷
wastes disposed	%	18%	0.10%	4.3%	0.59%	77%	0.01%
Low-level radioactive	kg	2.37x10 ⁻³	1.04x10 ⁻⁵	8.84x10 ⁻⁴	5.77x10 ⁻⁵	1.66x10 ⁻²	9.58x10 ⁻⁷
wastes disposed	%	12%	0.05%	4.4%	0.29%	83%	0.00%
Components for Re-use	kg	0.00	0.00	0.00	0.00	0.00	0.00
Materials for Recycling	kg	0.00	0.00	0.00	0.436	0.00	10.6
iviaterials for Necycling	%	0.00%	0.00%	0.00%	4.0%	0.00%	96%
Materials for energy recovery	kg	N/A	N/A	N/A	N/A	N/A	N/A
Exported energy	MJ	N/A	N/A	N/A	N/A	N/A	N/A

INA = Indicator not assessed. No classification scheme is available in OpenLCA to estimate these indicators.

ADDITIONAL ENVIRONMENTAL INFORMATION

STANLEY® Access Technologies is the only automatic door manufacturer with two US manufacturing facilities; Greenfield, IN and Farmington, CT.

Stanley's Refurbish Equipment Program means no dumpsters required and no landfills used; oil and grease is recycled.

Our Plant Recycling Program recycles oil and grease, cardboard, white paper and scrap aluminum and steel.

In 2017, STANLEY® Access Technologies' Farmington factory installed a combustion-free Bloom Energy Server for clean energy. This server will deliver enhanced sustainability benefits including high efficiency greenhouse gas emissions, avoid air pollutants and significantly reduce water use.

Our aluminum vendors are ISO14001 and ISO50001 certified to control their energy usage and environmental impacts.

SUPPORTING TECHNICAL INFORMATION

Data Sources

Data Sources			Data	Publication
Component	Material Dataset	Processing Dataset	Source	Date
PRODUCT CO	MPONENT			
	market for aluminium, primary, ingot aluminium, primary, ingot Cutoff, S/IAI Area, NA	metal working, average for aluminium product	EI v3.9	2022
Recycled Aluminum	market for aluminium scrap, new aluminium scrap, new Cutoff, S/RoW	manufacturing metal working, average for aluminium product manufacturing Cutoff, S/RoW	El v3.9	2022
	market for aluminium scrap, post-consumer aluminium scrap, post-consumer Cutoff, S/GLO		El v3.9	2022
Aluminum	market for aluminium, primary, ingot aluminium, primary, ingot Cutoff, S/IAI Area, North America	metal working, average for aluminium product manufacturing metal working, average for aluminium product manufacturing Cutoff, S/RoW	EI v3.9	2022
Steel	steel production, converter, low-alloyed steel, low-alloyed Cutoff, S/RoW	metal working, average for steel product manufacturing metal working, average for steel product manufacturing Cutoff, S/RoW	EI v3.9	2022
	polyethylene production, high density, granulate polyethylene, high density, granulate Cutoff, S/Ro'		El v3.9	2022
	polyvinylchloride production, bulk polymerisation polyvinylchloride, bulk polymerised Cutoff, S/RER		El v3.9	2022
	acrylonitrile-butadiene-styrene copolymer production acrylonitrile-butadiene-styrene copolymer Cutoff, S/RER		El v3.9	2022
Plastic	Polyoxymethylene (POM) PlasticsEurope/EU-27	injection moulding injection moulding Cutoff,	EI v3.9	2022
Flastic	polyurethane production, rigid foam polyurethane, rigid foam Cutoff, S/RoW	S/RoW	EI v3.9	2022
	polyvinylchloride production, bulk polymerisation polyvinylchloride, bulk polymerised Cutoff, S/RoW		EI v3.9	2022
	synthetic rubber production synthetic rubber Cutoff, S/RoW		EI v3.9	2022
	nylon 6-6 production nylon 6-6 Cutoff, S/RoW		El v3.9	2022
Electronics/ Motor Assembly	Electronics, for control units {GLO} market for Alloc Rec (46% steel (housing), 32% plastics, 14% printed wiring boards and 8% cables)	Included with material dataset	EI v3.9	2022
Glass	flat glass production, uncoated flat glass, uncoated Cutoff, S/RoW	tempering, flat glass tempering, flat glass Cutoff, S/RoW	El v3.9	2022
PACKAGING				
Cardboard	containerboard production, linerboard, kraftliner containerboard, linerboard Cutoff, S/RoW	Included with material dataset	EI v3.9	2022
Plastic Wrap	packaging film production, low density polyethylene packaging film, low density polyethylene Cutoff, S/RoW	Included with material dataset	EI v3.9	2022
Paper	kraft paper production kraft paper Cutoff, S/Ro\	Included with material dataset	EI v3.9	2022
TRANSPORTA	TION			
Road transport	Diesel Truck	transport, freight, lorry 16-32 metric ton, EURO4 transport, freight, lorry 16-32 metric ton, EURO4 Cutoff, S/RoW	EI v3.9	2022
Ship transport	Transoceanic Ship	transport, freight, sea, container ship transport, freight, sea, container ship Cutoff, S/GLO	EI v3.9	2022
RESOURCES				
Electricity	RFCW eGRID sub-region electricity grid	Electricity, medium voltage, at grid/RFCW	El v3.9;eGRID	2022; 2020
Electricity	NEWE eGRID sub-region electricity grid	Electricity, medium voltage, at grid/NEWE	El v3.9;eGRID	2022; 2020
Electricity	US average electricity grid	Electricity, medium voltage, {US} market for Alloc	El v3.9	2022
Natural gas combustion	Natural gas	heat production, natural gas, at boiler modulating >100kW heat, district or industrial, natural gas Cutoff, S/RoW	EI v3.9	2022

Data Quality

Data Quality Parameter	Data Quality Discussion
Time-Related Coverage Age of data and the minimum length of time over which data should be collected	The most recent available data are used, based on other considerations such as data quality and similarity to the actual operations. Typically, these data are less than 10 years old. All of the data used represented an average of at least one year's worth of data collection, and up to three years in some cases. Manufacturer-supplied data (primary data) are based on annual production for 2021.
Geographical Coverage Geographical area from which data for unit processes should be collected to satisfy the goal of the study	The data used in the analysis provide the best possible representation available with current data. Electricity use for product manufacture is modeled using representative data for the appropriate eGRID electricity grid mixes. Surrogate data used in the assessment are representative of North American or global operations. Data representative of global operations are considered sufficiently similar to actual processes. Data representing product disposal are based on US statistics.
Technology Coverage Specific technology or technology mix	For the most part, data are representative of the actual technologies used for processing, transportation, and manufacturing operations. Representative datasets are used to represent the actual processes, as appropriate.
Precision Measure of the variability of the data values for each data expressed (e.g. variance)	Precision of results are not quantified due to a lack of data. Data collected for operations were typically averaged for one or more years and over multiple operations, which is expected to reduce the variability of results.
Completeness Percentage of flow that is measured or estimated	The LCA model included all known mass and energy flows for production of the door products. In some instances, surrogate data used to represent upstream and downstream operations may be missing some data which is propagated in the model. No known processes or activities contributing to more than 1% of the total environmental impact for each indicator are excluded. In total, these missing data represent less than 5% of the mass or energy flows.
Representativeness Qualitative assessment of the degree to which the data set reflects the true population of interest (i.e. geographical coverage, time period, and technology coverage)	Data used in the assessment represent typical or average processes as currently reported from multiple data sources and are therefore generally representative of the range of actual processes and technologies for production of these materials. Considerable deviation may exist among actual processes on a site-specific basis; however, such a determination would require detailed data collection throughout the supply chain back to resource extraction.
Consistency Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	The consistency of the assessment is considered to be high. Data sources of similar quality and age are used; with a bias towards Ecoinvent v3.9 data where available. Different portions of the product life cycle are equally considered; however, it must be noted that final disposition of the product is based on assumptions of current average practices in the United States.
Reproducibility Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	Based on the description of data and assumptions used, this assessment would be reproducible by other practitioners. All assumptions, models, and data sources are documented.
Sources of the Data Description of all primary and secondary data sources	Data representing energy use at the STANLEY manufacturing facilities represent an annual average and are considered of high quality due to the length of time over which these data are collected, as compared to a snapshot that may not accurately reflect fluctuations in production. For secondary LCI datasets, Ecoinvent v3.9 LCI data are used.

Allocation

Annual energy resource use and emissions at the STANLEY manufacturing facilities were reported separately for electricity and fuel consumption (natural gas) and allocated to the product based on the cost of production of the product as a fraction of the total facility production costs (i.e., economic allocation).

The product system includes some recycled materials, which were allocated using the recycled content allocation method (also known as the 100-0 cut off method). Using the recycled content allocation approach, system inputs with recycled content do not receive any burden from the previous life cycle other than reprocessing of the waste material. At end of life, materials which are recycled leave the system boundaries with no additional burden.

Impacts from transportation were allocated based on the mass of material and distance transported.

Cut-off criteria

According to the PCR, cumulative omitted mass or energy flows within the product boundary shall not exceed 1%. In the present study, except as noted, all known materials and processes were included in the life cycle inventory.

REFERENCES

- 1. Product Category Rule for Preparing an Environmental Product Declaration for Power-Operated Pedestrian and Revolving Doors. UNCPC 4212. ASTM International. September 2016.
- 2. CML-IA Characterization Factors. Institute of Environmental Sciences. Leiden University. Netherlands.
- 3. Ecoinvent Centre (2022) Ecoinvent data from v3.9. Swiss Center for Life Cycle Inventories, Dubendorf, 2022, http://www.ecoinvent.org
- 4. ISO 14040:2006/AMD 1:2020 Environmental Management Life cycle assessment Principles and framework.
- 5. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- 6. ISO 14044:2006/AMD 1:2017/AMD 2:2020 Environmental Management Life cycle assessment Requirements and Guidelines.
- 7. SCS Type III Environmental Declaration Program: Program Operator Manual. V11.0 November 2021. SCS Global Services.
- 8. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI). Dr. Bare, J., https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-trac.i
- SCS Global Services. Life Cycle Assessment of Power-Operated Doors. July 2023. Draft Report. Prepared for STANLEY Access Technologies.
- 10. US EPA. Advancing Sustainable Materials Management:2018 Fact Sheet Assessing Trends in Materials Generation and Management in the United States. November 2020. https://www.epa.gov/sites/production/files/2020-11/documents/2018 ff fact sheet.pdf..
- US EPA. WARM Model Transportation Research Draft. Memorandum from ICF Consulting to United States Environmental Protection Agency. September 7, 2004. http://epa.gov/epawaste/conserve/tools/warm/SWMGHGreport.html#background
- 12. ANSI/BHMA A156.10-2017 Power Operated Pedestrian Doors
- 13. ACLCA 2019, Guidance to Calculating Non-LCIA Inventory Metrics in Accordance with ISO 21930:2017. The American Centre for Life Cycle Assessment. May 2019

For more information contact:

Allegion Access Technologies LLC

65 Scott Swamp Rd. Farmington, CT 06032 www.stanleyaccess.com | 860.677.2861

SCS Global Services

2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA Main +1.50.452.8000 | fax +1.510.452.8001